From aaf739cbd9ebe15a614100978d50ff82578595e0 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Tue, 15 Oct 2019 15:20:34 +0200 Subject: [PATCH] Update cheatsheet.en.md --- .../02.mirror/02.new-course-overview/cheatsheet.en.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md index 3c7e10099..ebee7f781 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md @@ -101,16 +101,16 @@ $`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$   You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. -! *USEFUL 1° :
+! *USEFUL 1* :
! The conjunction equation and the transverse magnification equation for a plane mirror ! are obtained by rewriting these two equations for a spherical mirror in the limit when ! $`|\overline{SC}|\longrightarrow\infty`$. ! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and ! $`\overline{M_T}=+1`$. -! *USEFUL 2° :
-! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from -! those of the spherical mirror**, with the following assumptions :
+! *USEFUL 2* :
+! *You can find* the conjunction and the transverse magnification *equations for a plane mirror directly from +! those of the spherical mirror*, with the following assumptions :
! $`n_{eme}=-n_{inc}`$
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction ! of propagation reverses after reflection on the mirror)