diff --git a/12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md b/12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md index 3e1e26a66..c607be4e1 100644 --- a/12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md +++ b/12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md @@ -213,8 +213,8 @@ $`\displaystyle=\int_{-x_0/2}^{+x_0/2} e^{\dfrac{i\,2\,\pi\,u_x\,x}{\lambda}}\; $`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$ $`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}`$ -$`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.`$ -$`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$ +$`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.\right.`$ +$`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$ $`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$ $`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$ @@ -255,8 +255,7 @@ $`=\;sin\,\theta\cdot\overrightarrow{e_x}\;+\;cos\,\theta\cdot\overrightarrow{e_ ainsi l'intensité diffractée à l'infini se réécrit -$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}`$ -$`\;{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$ +$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}{\left(\dfrac{\pi\,x_0\,sin\,\theta}{\lambda}\right)^2}`$ $`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$