From ade6a4d6a411fb67c178eeb392e54d86e1d25942 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Fri, 29 Jan 2021 12:19:42 +0100 Subject: [PATCH] Update textbook.en.md --- .../30.cylindrical-coordinates/10.main/textbook.en.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md index 39686e2e5..4f707dd0e 100644 --- a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md +++ b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md @@ -86,7 +86,7 @@ The cylindrical coordinates are ordered and noted $`(\rho,\varphi,z)`$. For any point $`M`$ in space: \- The $`\rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$ -between point $`O`$ and point $ m_{xy}`$.
+between point $`O`$ and point $`m_{xy}`$.
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle $`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$, the direction of rotation being such that the trihedron $`(Ox,Om_{xy},Oz)`$ is a direct trihedron.