diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md
index 826bd8097..4f0081a99 100644
--- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md
+++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md
@@ -227,7 +227,7 @@ EN : in orthonormal Cartesian coordinate :
$`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$
-$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\:div\,\overrightarrow{U} - \overrightarrow{rot}\:\overrightarrow{rot}\,\overrightarrow{U}`$
+$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\;div\;\overrightarrow{U} - \overrightarrow{rot}\;\overrightarrow{rot}\;\overrightarrow{U}`$
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel
EN : laplacian operator, vectorial laplacian, laplacian of a vector field
@@ -235,7 +235,7 @@ in orthonormal Cartesian coordinate :
$`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right)
+\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right)
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$
-$`\Delta\;\overrightarrow{U} = \left \{
+$`\Delta\;\overrightarrow{U} = \left \|
\begin{array}{r c l}
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\