From b2d4f9e09bdf69c91e47b246ccddbbd6321adefc Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Mon, 23 Sep 2019 13:44:44 +0200 Subject: [PATCH] Update cheatsheet.en.md --- .../03.lens/02.new-course-overview/cheatsheet.en.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/03.lens/02.new-course-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/03.lens/02.new-course-overview/cheatsheet.en.md index 970d4c4c3..9fadd9e04 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/03.lens/02.new-course-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/03.lens/02.new-course-overview/cheatsheet.en.md @@ -66,7 +66,7 @@ with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ i ![](lens-divergent-N2-en.jpeg) * Characterized by :
-\- **Focal lenght** (usually in cm) always <0 *+* adjective "**diverging**"
+\- **Focal lenght** (usually in cm) always >0 *+* adjective "**diverging**"
  or
\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *negative $f'<0$*.
  or