diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md
index abded0484..84e08203e 100644
--- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md
+++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md
@@ -150,9 +150,11 @@ de desplazamiento del punto M cuando solo aumenta infinitesimalmente la coordena
de déplacement du point M lorsque seule la coordonnée x croît de façon infinitésimale) s'écrit :
[EN] The unit vector tangent to the trajectory $`\overrightarrow{e_x}`$ (which indicates the direction of displacement
of the point M when only the coordinate x increases in an infinitesimal way) writes :
-
$`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrightarrow{OM}_x||}`$
+
$`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrightarrow{OM}_x||}`$
tambien / de même / similarly :
-$`\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$
+$`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$,
+$`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$
+$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$,
$`\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$
* **N3 ($`\rightarrow`$ N4)**
@@ -178,7 +180,7 @@ se escribe :
est l'élément de longueur $`dl_x`$, donc le vecteur $`\overrightarrow{e_x}`$ s'écrit :
[EN] the norm (or length) of the vector $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`$
is the scalar line element $`dl_x`$, so the vector $`\overrightarrow{e_x}`$ writes :
-
$`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}=l_x\;\overrightarrow{e_x}=dx\;\overrightarrow{e_x}`$
+
$`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}=l_x\;\overrightarrow{e_x}=dx\;\overrightarrow{e_x}`$
tambien / de même / similarly :
$`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}=l_y\;\overrightarrow{e_y}=dy\;\overrightarrow{e_y}`$
$`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}=l_z\;\overrightarrow{e_z}=dz\;\overrightarrow{e_z}`$