diff --git a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md index 8f47f260c..71016174e 100644 --- a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md @@ -63,4 +63,12 @@ $`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right La reconstruction de $`\Delta \;\overrightarrow{E} =\overrightarrow{grad} \left(div\;\overrightarrow{E}\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\;\overrightarrow{E}\right)`$ -a +, je dois y aller +donne : + +$`\Delta \;\overrightarrow{E} = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right) + \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} + +\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$ + +ce qui donne par identification au premier terme de l'équation d'onde : + +$`\Delta \;\overrightarrow{E}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right) + \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} + +\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$