Browse Source

Update textbook.fr.md

keep-around/b6b29926e2e059415907a2be02e19d482b9fe79c
Claude Meny 5 years ago
parent
commit
b6b29926e2
  1. 2
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

2
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

@ -244,7 +244,7 @@ $`dx`$, $`dy`$ y $`dz`$, et il s'écrit :<br>
in cartesian coordinates is the displacement vector from point $`M(x,y,z)`$ to point
$`M'(x+dx,y+dy,z+dz)`$ when the coordinates vary infinitely in quantities $`dx`$, $`dy`$ y $`dz`$,
and it writes :<br>
<br>$`=\overrightarrow{MM'}=d\overrightarrow{OM}=\overrightarrow{dr}=\overrightarrow{dl}`$
<br>$`\overrightarrow{MM'}=d\overrightarrow{OM}=\overrightarrow{dr}=\overrightarrow{dl}`$
$`=\partial\overrightarrow{OM}_x+\partial\overrightarrow{OM}_y+\partial\overrightarrow{OM}_z`$
$`=\overrightarrow{dl_x}+\overrightarrow{dl_y}+\overrightarrow{dl_z}`$
$`=l_x\;\overrightarrow{e_x}+l_y\;\overrightarrow{e_y}+l_z\;\overrightarrow{e_z}`$

Loading…
Cancel
Save