diff --git a/01.curriculum/01.physics-chemistry-biology/03.Niv3/04.electromagnetism/02.magnetostatics/02.magnetostatics-overview/cheatsheet.fr.md b/01.curriculum/01.physics-chemistry-biology/03.Niv3/04.electromagnetism/02.magnetostatics/02.magnetostatics-overview/cheatsheet.fr.md index 7ee82ca1d..307d15e2d 100644 --- a/01.curriculum/01.physics-chemistry-biology/03.Niv3/04.electromagnetism/02.magnetostatics/02.magnetostatics-overview/cheatsheet.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/03.Niv3/04.electromagnetism/02.magnetostatics/02.magnetostatics-overview/cheatsheet.fr.md @@ -54,10 +54,16 @@ de l'espace dite "de la main droite"**. ![](Ampere-theorem-3-L1200.jpg) -Le théorème d'Ampère dit que la **circulation du champ d'induction magnétique $`B`$ -le long du contour C**, égale la *somme algébrique des courants électriques traversant -la surface S*, ou, ce qui revient au même, égale le *flux du vecteur densité volumique -de courant à travers la surface S*. +Partant de la loi de Biot et Savart, le théorème d'Ampère montre que : + +* La **circulation du champ d'induction magnétique $`B`$ le long du contour C** +est égale à
+- la *somme algébrique des courants électriques traversant la surface S*,

+$`\oint_C \overrightarrox{B} \cdot \overrightarrox{dl} = \mic_0 \cdot \sum_n \overline{I_n}`$

+

ou, ce qui revient au même, au

+*flux du vecteur densité volumique de courant à travers la surface S*
+$`\oint_C \overrightarrox{B} \cdot \overrightarrox{dl} = \mic_0 \cdot \iint_S \overrightarrox{j} \cdot \overrightarrox{dS}`$ + ![](Ampere-theorem-4-L1200.jpg)