diff --git a/12.temporary_ins/65.geometrical-optics/50.simple-elements/30.thin-lens/20.overview/cheatsheet.en.md b/12.temporary_ins/65.geometrical-optics/50.simple-elements/30.thin-lens/20.overview/cheatsheet.en.md
new file mode 100644
index 000000000..bc5961aa9
--- /dev/null
+++ b/12.temporary_ins/65.geometrical-optics/50.simple-elements/30.thin-lens/20.overview/cheatsheet.en.md
@@ -0,0 +1,161 @@
+---
+title: 'The thin lens'
+media_order: 'Const_lens_conv_point_AapresO.gif,lens-convergent-N2-en.jpeg,Const_lens_conv_point_AentreFO.gif,lens-convergent-N2-es.jpeg,lens-convergent-N2-fr.jpeg,Const_lens_conv_point_AavantF.gif,lens-divergent-N2-es.jpeg,lens-divergent-N2-fr.jpeg,lens-divergent-N2-en.jpeg,diverging-thin-lens-representation.jpeg,converging-thin-lens-representation.jpeg'
+published: true
+routable: true
+visible: false
+lessons:
+ - slug: simple-optical-elements
+ - order: 3
+---
+
+!!!! *COURS EN CONSTRUCTION :*
+!!!! Publié mais invisible : n'apparait pas dans l'arborescence du site m3p2.com. Ce cours est *en construction*, il n'est *pas validé par l'équipe pédagogique* à ce stade.
+!!!! Document de travail destiné uniquement aux équipes pédagogiques.
+
+
+
+
+--------------------
+
+### What is a lens ?
+
+#### Objective
+
+* initial : to **focuse or disperse the light**.
+* ultimate : to **realize images**, alone or as part of optical instruments.
+
+#### Physical principle
+
+* **uses the refractive phenomenon**, described by the Snell-Descartes' law.
+
+#### Constitution
+
+* Piece of **glass, quartz, plastic** (for visible and near infrared and UV).
+* **Rotationally symmetrical**.
+* **2 polished surfaces** perpendicular to its axis of symmetry, **either or both curved** (and most often spherical).
+
+
+
+#### Interest in optics : thin lenses
+
+* **Thin lens** : *thickness << diameter*
+* Thins lens : **most important simple optical element** that is *used alone or combined in serie in most optical instruments* : magnifying glasses, microscopes, tele and macro objectives, camera, refracting telescopes.
+
+
+
+### Modeling a thin lens surrounded by air, gaz or vaccum.
+
+#### Why modeling ?
+
+* To **understand, calculate and predict images** of objects given by thin lenses
+
+
+
+##### Why surrounded by air, gaz or vaccum?
+
+* **In most optical instruments**, lenses are *surrounding by air*.
+* **air, gaz and vaccum** have refractive index values in the range "$1.000\pm0.001$, and can be approximated by *$n_{air}=n_{gaz}=n_{vaccum}=1$*
+$\Longrightarrow$ same optical behavior in air, gaz and vacuum.
+
+#### Types and characterization of thin lenses
+
+**Convergent** = **converging** = **convexe** = **positive** lenses
+
+
+
+* Characterized by :
+\- **Focal lenght** (usually in cm) always >0 *+* adjective "**converging**"
+ or
+\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *positive $f'>0$*.
+ or
+\- Its **vergence** $V$ (in ophtalmology) that is *positive $V>0$*,
+with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).
+
+**Divergent** = **diverging** = **concave ** = **negative** lenses
+
+
+
+* Characterized by :
+\- **Focal lenght** (usually in cm) always >0 *+* adjective "**diverging**"
+ or
+\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *negative $f'<0$*.
+ or
+\- Its **vergence** $V$ (in ophtalmology) that is *negative $V<0$*,
+with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).
+
+
+
+### Analytical modeling
+
+(_for thin lens surrounded by air, gaz or vaccum_)
+
+##### Thin lens equation
+**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$**
+
+##### Transverse magnification expression
+**$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$**
+
+
+### Graphical modeling
+
+#### Thin lens representation
+
+* **optical axis** = *revolution axis* of the lens, positively *oriented* in the direction of propagation of the light (_from the object towards the lens_).
+
+* **thins lens representation** :
+\- *line segment*, perpendicular to optical axis, centered on the axis with symbolic *indication of the lens shape* at its extremities (_convexe or concave_).
+\- **S = C = O** : vertex S = nodal point C = center O of the thin lens $\Longrightarrow$ is used point O.
+\- *point O*, intersection of the line segment with optical axis.
+\- *object focal point F* and *image focal point F'*, positioned on the optical axis symmetrically with respect to the point O ($f=-f'$) at algebraic distances $\overline{OF}=f$ and $\overline{OF'}=f'$.
+\- *object focal plane (P)* and *image focal plane (P')*, planes perpendicular to the optical axis at respectively points $F$ and $F'$.
+
+
+_Converging thin lens representation : $\overline{OF}<0$ , $\overline{OF'}>0$ and $|\overline{OF}|=|\overline{OF'}|$_
+
+ 
+ _Divverging thin lens representation : $\overline{OF}>0$ , $\overline{OF'}<0$ and $|\overline{OF}|=|\overline{OF'}|$_
+
+#### Determining conjugate points :
+
+##### Converging thin lens
+
+
+
+* **Point source located between ∞ et F**
+
+
+
+* **Point source located between F et O**
+
+
+
+* **Virtual object point** (will be seen at level foothills, to remove from here).
+
+
+
+##### Diverging thin lens
+
+(to be implemented)