1 changed files with 0 additions and 161 deletions
-
16112.temporary_ins/65.geometrical-optics/50.simple-elements/30.thin-lens/20.overview/cheatshhet.en.md
@ -1,161 +0,0 @@ |
|||||
--- |
|
||||
title: 'The thin lens' |
|
||||
media_order: 'Const_lens_conv_point_AapresO.gif,lens-convergent-N2-en.jpeg,Const_lens_conv_point_AentreFO.gif,lens-convergent-N2-es.jpeg,lens-convergent-N2-fr.jpeg,Const_lens_conv_point_AavantF.gif,lens-divergent-N2-es.jpeg,lens-divergent-N2-fr.jpeg,lens-divergent-N2-en.jpeg,diverging-thin-lens-representation.jpeg,converging-thin-lens-representation.jpeg' |
|
||||
published: true |
|
||||
routable: true |
|
||||
visible: false |
|
||||
lessons: |
|
||||
- slug: simple-optical-elements |
|
||||
- order: 3 |
|
||||
--- |
|
||||
|
|
||||
!!!! *COURS EN CONSTRUCTION :* <br> |
|
||||
!!!! Publié mais invisible : n'apparait pas dans l'arborescence du site m3p2.com. Ce cours est *en construction*, il n'est *pas validé par l'équipe pédagogique* à ce stade. <br> |
|
||||
!!!! Document de travail destiné uniquement aux équipes pédagogiques. |
|
||||
|
|
||||
<!--MétaDonnée : ... --> |
|
||||
|
|
||||
|
|
||||
-------------------- |
|
||||
|
|
||||
### What is a lens ? |
|
||||
|
|
||||
#### Objective |
|
||||
|
|
||||
* initial : to **focuse or disperse the light**. |
|
||||
* ultimate : to **realize images**, alone or as part of optical instruments. |
|
||||
|
|
||||
#### Physical principle |
|
||||
|
|
||||
* **uses the refractive phenomenon**, described by the Snell-Descartes' law. |
|
||||
|
|
||||
#### Constitution |
|
||||
|
|
||||
* Piece of **glass, quartz, plastic** (for visible and near infrared and UV). |
|
||||
* **Rotationally symmetrical**. |
|
||||
* **2 polished surfaces** perpendicular to its axis of symmetry, **either or both curved** (and most often spherical). |
|
||||
|
|
||||
<!--image to build : a thin lens--> |
|
||||
|
|
||||
#### Interest in optics : thin lenses |
|
||||
|
|
||||
* **Thin lens** : *thickness << diameter* |
|
||||
* Thins lens : **most important simple optical element** that is *used alone or combined in serie in most optical instruments* : magnifying glasses, microscopes, tele and macro objectives, camera, refracting telescopes. |
|
||||
|
|
||||
<!--image to build N1 ou N2 : a composition : |
|
||||
upper medium : a unic thin lens |
|
||||
upper part towards utilization of a unique lens : magnigfying glass and eyeglasses |
|
||||
lower medium : small serie of centered naked lenses |
|
||||
lower part toward utilization of combined lenses : macroscope, camera (apparatus and objective of a cellular), refracting telescope, teleopbjective--> |
|
||||
|
|
||||
### Modeling a thin lens surrounded by air, gaz or vaccum. |
|
||||
|
|
||||
#### Why modeling ? |
|
||||
|
|
||||
* To **understand, calculate and predict images** of objects given by thin lenses |
|
||||
|
|
||||
<!--picture when we see the object, the lens and the image--> |
|
||||
|
|
||||
##### Why surrounded by air, gaz or vaccum? |
|
||||
|
|
||||
* **In most optical instruments**, lenses are *surrounding by air*. |
|
||||
* **air, gaz and vaccum** have refractive index values in the range "$1.000\pm0.001$, and can be approximated by *$n_{air}=n_{gaz}=n_{vaccum}=1$*<br> |
|
||||
$\Longrightarrow$ same optical behavior in air, gaz and vacuum. |
|
||||
|
|
||||
#### Types and characterization of thin lenses |
|
||||
|
|
||||
**Convergent** = **converging** = **convexe** = **positive** lenses |
|
||||
|
|
||||
 |
|
||||
|
|
||||
* Characterized by :<br> |
|
||||
\- **Focal lenght** (usually in cm) always >0 *+* adjective "**converging**"<br> |
|
||||
or<br> |
|
||||
\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *positive $f'>0$*.<br> |
|
||||
or<br> |
|
||||
\- Its **vergence** $V$ (in ophtalmology) that is *positive $V>0$*,<br> |
|
||||
with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).<br> |
|
||||
|
|
||||
**Divergent** = **diverging** = **concave ** = **negative** lenses |
|
||||
|
|
||||
 |
|
||||
|
|
||||
* Characterized by :<br> |
|
||||
\- **Focal lenght** (usually in cm) always >0 *+* adjective "**diverging**"<br> |
|
||||
or<br> |
|
||||
\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *negative $f'<0$*.<br> |
|
||||
or<br> |
|
||||
\- Its **vergence** $V$ (in ophtalmology) that is *negative $V<0$*,<br> |
|
||||
with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).<br> |
|
||||
|
|
||||
<!-- suppressed |
|
||||
#### What physical framework, model and technics ? |
|
||||
|
|
||||
* _Framework : Geometrical Optics = Light rays optics $\longrightarrow$ foothills stage_. |
|
||||
|
|
||||
* _Model : paraxial model = gaussian model $\longrightarrow$ foothills stage_. |
|
||||
|
|
||||
* Model splits in *two different technics (but equivalent)* :<br> **graphical modeling** AND **analytical modeling** |
|
||||
|
|
||||
* *Differences between model predictions and experimental observations* : ** optical aberrations** (_under control, minimized and negligeable in optical instruments_). |
|
||||
--> |
|
||||
|
|
||||
### Analytical modeling |
|
||||
|
|
||||
(_for thin lens surrounded by air, gaz or vaccum_) |
|
||||
|
|
||||
##### Thin lens equation |
|
||||
**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$** |
|
||||
|
|
||||
##### Transverse magnification expression |
|
||||
**$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$** |
|
||||
|
|
||||
|
|
||||
### Graphical modeling |
|
||||
|
|
||||
#### Thin lens representation |
|
||||
|
|
||||
* **optical axis** = *revolution axis* of the lens, positively *oriented* in the direction of propagation of the light (_from the object towards the lens_). |
|
||||
|
|
||||
* **thins lens representation** :<br><br> |
|
||||
\- *line segment*, perpendicular to optical axis, centered on the axis with symbolic *indication of the lens shape* at its extremities (_convexe or concave_).<br><br> |
|
||||
\- **S = C = O** : vertex S = nodal point C = center O of the thin lens $\Longrightarrow$ is used point O.<br><br> |
|
||||
\- *point O*, intersection of the line segment with optical axis.<br><br> |
|
||||
\- *object focal point F* and *image focal point F'*, positioned on the optical axis symmetrically with respect to the point O ($f=-f'$) at algebraic distances $\overline{OF}=f$ and $\overline{OF'}=f'$.<br><br> |
|
||||
\- *object focal plane (P)* and *image focal plane (P')*, planes perpendicular to the optical axis at respectively points $F$ and $F'$. |
|
||||
|
|
||||
<br> |
|
||||
_Converging thin lens representation : $\overline{OF}<0$ , $\overline{OF'}>0$ and $|\overline{OF}|=|\overline{OF'}|$_ |
|
||||
|
|
||||
<br> |
|
||||
_Divverging thin lens representation : $\overline{OF}>0$ , $\overline{OF'}<0$ and $|\overline{OF}|=|\overline{OF'}|$_ |
|
||||
|
|
||||
#### Determining conjugate points : |
|
||||
|
|
||||
##### Converging thin lens |
|
||||
|
|
||||
<!-- |
|
||||
**Towards geogebra animations** :<br> |
|
||||
\- Graphical construction<br> |
|
||||
[Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/zqwazusz)<br> |
|
||||
\- Graphical construction and light pencils <br> |
|
||||
[Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/wkrw5qgm)<br> |
|
||||
\- Graphical construction and transverse magnification<br> |
|
||||
[Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/xwbwedft)<br> |
|
||||
--> |
|
||||
|
|
||||
* **Point source located between ∞ et F** |
|
||||
|
|
||||
 |
|
||||
|
|
||||
* **Point source located between F et O** |
|
||||
|
|
||||
 |
|
||||
|
|
||||
* **Virtual object point** (will be seen at level foothills, to remove from here). |
|
||||
|
|
||||
 |
|
||||
|
|
||||
##### Diverging thin lens |
|
||||
|
|
||||
(to be implemented) |
|
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue