From bf2c324f1c3aec0801980db4fbbc94b557d1ddf6 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Sat, 29 Aug 2020 11:09:41 +0200 Subject: [PATCH] Update textbook.fr.md --- .../04.reference-frames-coordinate-systems/textbook.fr.md | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md index 84e08203e..682a4174f 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md @@ -155,7 +155,7 @@ of the point M when only the coordinate x increases in an infinitesimal way) wri $`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$, $`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$
$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$, -$`\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$ +$`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$ * **N3 ($`\rightarrow`$ N4)**
[ES] Los vectores $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ @@ -170,7 +170,10 @@ En coordonnées cartésiennes, les vecteurs de base gardent la [EN] The vectors $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ form an **orthonormal basis** of space. It is the **base associated with Cartesian coordinates**. In Cartesian coordinates, the base vectors keep the -**same direction whatever the position of the point $`M`$**. +**same direction whatever the position of the point $`M`$**.
+
$`(\overrightarrow{e_x},\overrightarrow{e_x},\overrightarrow{e_x})`$ +base ortogonal independiente de la posición de $`M`$ / base orthogonale indépendante +de la position de $`M`$ / orthogonal basis independent of the position of $`M`$. * **N3 ($`\rightarrow`$ N4)**
[ES] La norma del vector $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`$