From c38d768f365c33ddad18ac5bfd7ede45e553b492 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Fri, 20 Mar 2020 01:21:23 +0100 Subject: [PATCH] Update textbook.fr.md --- .../02.electromagnetic-waves-vacuum-main/textbook.fr.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md index e24a65d95..d6237e4b1 100644 --- a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md @@ -309,7 +309,7 @@ quelconque de l'espace, est : * pour le champ électrique : $`\hspace{0.6cm}\overrightarrow{E}=\left| - \begin{array}{r c l} + \begin{array}{l} E_x=E_0x\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_x)\\ E_y=E_0y\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_y)\\ E_z=E_0z\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_z)\\ @@ -319,7 +319,7 @@ $`\hspace{0.6cm}\overrightarrow{E}=\left| * pour le champ magnétique : $`\hspace{0.6cm}\overrightarrow{B}=\left| - \begin{array}{r c l} + \begin{array}{l} B_x=B_0x\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_x)\\ B_y=B_0y\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_y)\\ B_z=B_0z\cdot cos(\pm\,\overrightarrow{k}\cdot\overrightarrow{r}\pm \omega\,t+\phi_z)\\ @@ -335,7 +335,7 @@ Si l'OPPM se propage en direction et sens de l'un des vecteurs de base, par exem $`\overrightarrow{e_z}`$, alors l'écriture de l'OPPM se simplifie : $`\hspace{0.6cm}\overrightarrow{E}=\left| - \begin{array}{r c l} + \begin{array}{l} E_x=E_0x\cdot cos(kz - \omega\,t + \phi_x)\\ E_y=E_0y\cdot cos(kz - \omega\,t + \phi_y)\\ E_z=0\\