From c43cbf4c297546806a4d2a288402b9262d617ed1 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 27 Aug 2020 20:06:03 +0200 Subject: [PATCH] Update textbook.fr.md --- .../04.reference-frames-coordinate-systems/textbook.fr.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md index 0315f08ba..4a78dd95a 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md @@ -28,7 +28,7 @@ cartésiennes $`(X_1, Y_1, Z_1)`$ et $`(X_2, Y_2, Z_2)`$ est donné par le théo $`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}`$ -$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}=\displaystyle\sqrt\sum_{i=1}^3(X_2^î-X_1î)^2`$ +$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}=\displaystyle\sqrt{\sum_{i=1}^3(X_2^î-X_1î)^2}`$