|
|
@ -134,7 +134,7 @@ FR : cordonnée d'un vecteur <br> |
|
|
EN : coordinate of a vector |
|
|
EN : coordinate of a vector |
|
|
|
|
|
|
|
|
$`\overrightarrow{U} \cdot \overrightarrow{V}`$ <br> |
|
|
$`\overrightarrow{U} \cdot \overrightarrow{V}`$ <br> |
|
|
ES : producto escalar <br> <br> |
|
|
|
|
|
|
|
|
ES : producto escalar <br> |
|
|
FR : produit scalaire <br> |
|
|
FR : produit scalaire <br> |
|
|
EN : scalar product (= dot product) |
|
|
EN : scalar product (= dot product) |
|
|
|
|
|
|
|
|
@ -244,12 +244,12 @@ $`\Delta\;\overrightarrow{U} = \left | |
|
|
\right.`$ |
|
|
\right.`$ |
|
|
|
|
|
|
|
|
$`\Delta\;\overrightarrow{U} = \left | |
|
|
$`\Delta\;\overrightarrow{U} = \left | |
|
|
$\begin{pmatrix} |
|
|
|
|
|
|
|
|
\begin{pmatrix} |
|
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\[4mm] |
|
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\[4mm] |
|
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\[4mm] |
|
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\[4mm] |
|
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} \\[4mm] |
|
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} \\[4mm] |
|
|
\end{pmatrix}$ |
|
|
|
|
|
\right.`$ |
|
|
|
|
|
|
|
|
\end{pmatrix} |
|
|
|
|
|
\right.`$ |
|
|
|
|
|
|
|
|
ES : escalar = número real o complexo + unidad de medida? <br> |
|
|
ES : escalar = número real o complexo + unidad de medida? <br> |
|
|
FR : scalaire = nombre réel ou complexe + unité de mesure <br> |
|
|
FR : scalaire = nombre réel ou complexe + unité de mesure <br> |
|
|
|