|
|
|
@ -169,11 +169,25 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous |
|
|
|
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction equation (equ. 1). |
|
|
|
|
|
|
|
* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$<br> |
|
|
|
(equ.1)$`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`$$`\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`$ |
|
|
|
(equ.1)$`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`$ |
|
|
|
$`\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`$ (equ.4) |
|
|
|
|
|
|
|
* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$<br> |
|
|
|
(equ.1) $`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`$$`\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}} |
|
|
|
`$ |
|
|
|
(equ.1) $`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`$ |
|
|
|
$`\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}}`$ (equ.5) |
|
|
|
|
|
|
|
!!!! *ADVISE* :<br> |
|
|
|
!!!! Memory does not replace understanding. Do not memorise (equ.4) and (equ.5)), but understand |
|
|
|
!!!! the definitions of the object and image focal points, and know how to find these two equations |
|
|
|
!!! from the conjuction equation for a spherical refracting surface. |
|
|
|
!!!! |
|
|
|
|
|
|
|
! *NOTE* :<br> |
|
|
|
! An optical element being convergent if the image focal point is real, |
|
|
|
! so if $`\overline{OF}>0`$ (with optically axis positively oriented in the direction of the light propagation), |
|
|
|
! you can deduce from (equ.4)) that is spherical refracting surface is convergent if and only if its center |
|
|
|
! of curvature C is in the mmedium of highest refractive index. |
|
|
|
! |
|
|
|
|
|
|
|
##### 2 - Thin spherical refracting surface representation |
|
|
|
|
|
|
|
|