From da483d5eb7595b00d59736f45ffe23a2c89446ef Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 14 Nov 2019 21:50:02 +0100 Subject: [PATCH] Update textbook.en.md --- .../intercambio-curso-electromagnetismo/textbook.en.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index d3c6cbc3a..bae745650 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -634,7 +634,7 @@ $`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}`$ Electromagnétisme dans le vide : -$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \mu_0 \cdot \overrightarrow{j_D} = \mu_0 \cdot (\overrightarrow{j}+\overrightarrow{j_D})`$ +$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \mu_0 \cdot \overrightarrow{j_D}`$$` = \mu_0 \cdot (\overrightarrow{j}+\overrightarrow{j_D})`$ avec $`\overrightarrow{j_D}`$ courant de déplacement : $`\overrightarrow{j_D}=\epsilon_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$ @@ -687,7 +687,7 @@ $`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, #### Ecuaciones de Maxwell en forma integral / Equations de maxwell intégrales / ... -$`\displaystyle\oiint_S\overrightarrow{E}\cdot\overrightarrow{dS}=\dfrac{Q_{int}}{\epsilon_0}`$$`=\dfrac{1}{\epsilon_0} \cdot \displaystyle\iiint_{\big{\tau}\leftrightarrow S} \rho \cdot d\tau`$ +$`\displaystyle\oiint_S\overrightarrow{E}\cdot\overrightarrow{dS}=\dfrac{Q_{int}}{\epsilon_0}`$$`=\dfrac{1}{\epsilon_0} \cdot \displaystyle\iiint_{\tau\leftrightarrow S} \rho \cdot d\tau`$ $`\displaystyle\oiint_S\overrightarrow{B}\cdot\overrightarrow{dS}=0`$