diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
index 659b0d906..afa336845 100644
--- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
+++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
@@ -678,23 +678,22 @@ $`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
[FR] Dans l'écriture d'une équation, nous voyons relativement souvent l'erreur de type :
[EN] In the expression of an equation, we relatively often see the type of error :
$`d ... = \int ... d...`$
-[ES] En una parte del curso "Atención" (fondo rojo), tendremos que explicar esto.
-[FR] Dans une partie de cours "Attention" (fond rouge), nous devrons expliquer cela.
-[EN] In a part of the course "Attention" (red background), we will have to explain this.
+[ES] En una parte del curso "Atención" (fondo rojo), deberíamos explicar esto.
+[FR] Dans une partie de cours "Attention" (fond rouge), nous devrions expliquer cela.
+[EN] In a part of the course "Attention" (red background), we should explain this.
* [ES] Si $`xxx`$ es una cantidad física escalar o vectorial, propongo que $`dxxx`$ significa una
-variación infinitesimal de esta cantidad y $`\delta xxx`$ una variación macroscópica.
+variación infinitesimal de esta cantidad y $`\Delta xxx`$ una variación macroscópica.
[FR] Si $`xxx`$ est une grandeur physique scalaire ou vectorielle, je propose que $`dxxx`$ signifie
-une variation infinitésimale de cette grandeur, et d$`\delta xxx`$ une variation macrosocpique.
+une variation infinitésimale de cette grandeur, et d$`\Delta xxx`$ une variation macrosocpique.
[EN] If $`xxx`$ is a scalar or vector physical quantity, I propose that $`dxxx`$ means an infinitesimal
-variation of this quantity, and $`\delta xxx`$ a macrosocpic variation.
+variation of this quantity, and $`\Delta xxx`$ a macrosocpic variation.
Ainsi
$`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
=\lim_{\Delta t\rightarrow 0}
\left(
\dfrac{\overrightarrow{OM}(t+\Delta t)-\overrightarrow{OM}(t))}{\Delta t}
\right)`$
-$`=\dfrac{\overrightarrow{OM}(t+dt)-\overrightarrow{OM}(t)}{dt}`$
deviendrait
$`\displaystyle\dfrac{d\overrightarrow{OM}(t)}{dt}
=\lim_{\Delta t\rightarrow 0}