diff --git a/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md b/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md index 01afe363d..8560d7db3 100644 --- a/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md @@ -253,7 +253,7 @@ vectoriel au point M. En reprenant la définition (1), j'obtiens $`\overrightarrow{rot} \; \overrightarrow{X_M} \cdot \overrightarrow{e_z} = \lim_{C \to 0} \; \dfrac{\oint_{ABCD} \overrightarrow{X} \cdot \overrightarrow{dl}}{\iint_{ABCD} dS}`$ -$`=\left.\dfrac{\partial Y}{\partial y}\right|_M -\left.\dfrac{\partial X}{\partial y}\right|_M`$ +$`=\left.\dfrac{\partial Y}{\partial x}\right|_M -\left.\dfrac{\partial X}{\partial y}\right|_M`$ Je peux reprendre la totalité du raisonnement précédent appliqué à des rectangles