From e9c7d3d759734b84ffe1aa02bc2dc9f5a8fefc51 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 20 Aug 2020 11:30:00 +0200 Subject: [PATCH] Update textbook.fr.md --- .../05.classical-mechanics/vector-analysis/textbook.fr.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md index d31a331df..a610f06ed 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md @@ -517,7 +517,7 @@ $`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarro For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$, we should use : -$`\overrightarrow{U}=\left(\begin[array](l)U_1//U_2//U_3)\end[array]\right)`$ +$`\overrightarrow{U}=\left(\begin{array}{l}U_1//U_2//U_3)\end{array}\right)`$