From f0b55e147a080a4dfef3817942aaaabc37ac76a3 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Wed, 9 Oct 2019 23:32:33 +0200 Subject: [PATCH] Update cheatsheet.en.md --- .../02.new-course-overview/cheatsheet.en.md | 44 ++++++++++++++++--- 1 file changed, 39 insertions(+), 5 deletions(-) diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md index f20356b4f..b7b26f258 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md @@ -105,21 +105,55 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. ! The conjunction equation and the transverse magnification equation for a plane mirror ! are obtained by rewriting these two equations for a spherical mirror in the limit when ! $`|\overline{SC}|\longrightarrow\infty`$. -! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and +! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and ! $`\overline{M_T}=+1`$. ! *USEFUL 2° :
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from -! those of the spherical mirror**, with the following assumptions :

-! $`n_{eme}=-n_{inc}`$

+! those of the spherical mirror**, with the following assumptions :
+! $`n_{eme}=-n_{inc}`$
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction -! of propagation reverses after reflection on the mirror)

-! +! of propagation reverses after reflection on the mirror)
! are obtained by rewriting these two equations for a spherical refracting surface in the limit ! when $`|\overline{SC}|\longrightarrow\infty`$. ! Then we get for a plane mirror :
! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$ +##### Graphical study + +*1 - Determining object and image focal points* + +Positions of object focal point F and image focal point F’ are easily obtained from the conjunction +equation (equ. 1). + +* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$

+(equ.1) $`\Longrightarrow\dfrac{1}{\overline{SF'}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{\overline{SC}}{2}`$ + +* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$

+(equ.2) $`\Longrightarrow\dfrac{1}{\overline{SF}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF}=\dfrac{\overline{SC}}{2}`$ + +*2 - Thin spherical mirror representation* + +* **Optical axis = revolution axis** of the mirror, positively **oriented** in the direction of propagation of the incident light. + +* Thin spherical mirror equation :

+\-**line segment**, perpendicular to the optical axis, centered on the axis with symbolic *indication of the +direction of curvature* of the surface at its extremities, and *dark or hatched area on the non-reflective +side* of the mirror.

+\-**vertex S**, that locates the refracting surface on the optical axis;

+\-**nodal point C = center of curvature**.

+\-**object focal point F** and **image focal point F’**. + +##### Examples of graphical situations, with analytical results to train + +* with **real objects** + + + + + + +