From fc259092cfd68d1ab218e5fef6dbcbece8d5654a Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Tue, 19 Nov 2019 17:30:02 +0100 Subject: [PATCH] Update textbook.en.md --- .../textbook.en.md | 20 ++++++------------- 1 file changed, 6 insertions(+), 14 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index 372b2bd75..779a91b32 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -637,7 +637,7 @@ local (magnétostatique) $`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}`$ -Electromagnétisme dans le vide : +local (électromagnetism) $`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \mu_0 \cdot \overrightarrow{j_D}`$$` = \mu_0 \cdot (\overrightarrow{j}+\overrightarrow{j_D})`$ @@ -755,25 +755,17 @@ $`\displaystyle\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot \overright Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración / derivación entre variables de espacio y tiempo no importa. -$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS} = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$ +$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS} += - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$ -Ostrogradsky’s theorem : for all vectorial field $`\vec{X}`$, +Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) : +for all vectorial field $`\vec{X}`$, -Con los vectores de intensidad de campo eléctrico $`\overrightarrow{E}`$ y magnético `\overrightarrow{H}`$ -Avec les vecteurs d'excitation électrique $`\overrightarrow{E}`$ et magnétique `\overrightarrow{H}`$ - -$`\displaystyle\oiint_S\overrightarrow{E}\cdot\overrightarrow{dS}=\dfrac{Q_{int}}{\epsilon_0}`$ -$`=\dfrac{1}{\epsilon_0} \cdot \displaystyle\iiint_{\tau\leftrightarrow S} \rho \cdot d\tau`$ +$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau= \displaystyle\oiint_{S \leftrightarrow \tau}\overrightarrow{X}}\cdot\overrightarrow{dS}`$ -$`\displaystyle\oiint_S\overrightarrow{H}\cdot\overrightarrow{dS}=0`$ -$`\displaystyle\iiint_{\tau} div\overrightarrow{E} \cdot d\tau= \displaystyle\iiint_{\tau} -\dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho -\cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$ -$`\displaystyle\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} -= -\displaystyle\iint_{S \leftrightarrow \tau} \mu_0 \dfrac{\partial \overrightarrow{H}}{\partial t}\cdot \overrightarrow{dS}`$