From fd4e52f613509aa93b6053b3725ae1db226b7d79 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Tue, 19 Nov 2019 20:47:44 +0100 Subject: [PATCH] Update textbook.en.md --- .../textbook.en.md | 39 +++++++++++++++---- 1 file changed, 31 insertions(+), 8 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index dbcde9782..46ccffda0 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -746,19 +746,39 @@ $`=\dfrac{1}{\epsilon_0} \cdot \displaystyle\iiint_{\tau\leftrightarrow S} \rho $`\displaystyle\oiint_S\overrightarrow{B}\cdot\overrightarrow{dS}=0`$ --> +------------------------ - -* **Ley de Gauss = teorema de Gauss** / Théorème de Gauss / Gauss' theorem +* **Ley de Gauss = teorema de Gauss / Théorème de Gauss / Gauss' theorem** $`\displaystyle\iiint_{\tau} div\overrightarrow{E} \cdot d\tau= \displaystyle\iiint_{\tau} \dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$ + +Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle +\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ + +$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle +\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}` = \Phi_E`$ + +$`\Phi_E`$ : Flujo eléctrico / + +$`\Phi_E = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS} += \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$ + +-------------------- + +* **Ley de Faraday / Loi de Faraday** + + $`\displaystyle\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} = -\displaystyle\iint_{S \leftrightarrow \tau} \dfrac{\partial \overrightarrow{B}}{\partial t}\cdot \overrightarrow{dS}`$ -Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración / derivación entre variables de espacio y tiempo no importa. - +Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración +/ derivación entre variables de espacio y tiempo no importa.
+Mécanique newtonienne : espace et temps sont découplés $`\Longrightarrow`$ l'ordre d'intégration / différenciation entre +variables d'espace et de temps n'importe pas. + $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS} = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$ @@ -767,16 +787,19 @@ Stokes' theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iint_{S\ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} -= -\displaystyle\iint_{S \leftrightarrow \tau} \dfrac{\partial \overrightarrow{B}}{\partial t}\cdot \overrightarrow{dS}`$ += fem = \mathcal{C}_E`$ + +$`\mathcal{C}_E` = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido* + +$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$ + -Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) : -for all vectorial field $`\vec{X}`$, -$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle +Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ Stokes' theorem =