--- title: 'The thin lens' media_order: 'Const_lens_conv_point_AapresO.gif,lens-convergent-N2-en.jpeg,Const_lens_conv_point_AentreFO.gif,lens-convergent-N2-es.jpeg,lens-convergent-N2-fr.jpeg,Const_lens_conv_point_AavantF.gif,lens-divergent-N2-es.jpeg,lens-divergent-N2-fr.jpeg,lens-divergent-N2-en.jpeg,diverging-thin-lens-representation.jpeg,converging-thin-lens-representation.jpeg' published: true routable: true visible: false lessons: - slug: simple-optical-elements - order: 3 --- !!!! *COURS EN CONSTRUCTION :*
!!!! Publié mais invisible : n'apparait pas dans l'arborescence du site m3p2.com. Ce cours est *en construction*, il n'est *pas validé par l'équipe pédagogique* à ce stade.
!!!! Document de travail destiné uniquement aux équipes pédagogiques. -------------------- ### What is a lens ? #### Objective * initial : to **focuse or disperse the light**. * ultimate : to **realize images**, alone or as part of optical instruments. #### Physical principle * **uses the refractive phenomenon**, described by the Snell-Descartes' law. #### Constitution * Piece of **glass, quartz, plastic** (for visible and near infrared and UV). * **Rotationally symmetrical**. * **2 polished surfaces** perpendicular to its axis of symmetry, **either or both curved** (and most often spherical). #### Interest in optics : thin lenses * **Thin lens** : *thickness << diameter* * Thins lens : **most important simple optical element** that is *used alone or combined in serie in most optical instruments* : magnifying glasses, microscopes, tele and macro objectives, camera, refracting telescopes. ### Modeling a thin lens surrounded by air, gaz or vaccum. #### Why modeling ? * To **understand, calculate and predict images** of objects given by thin lenses ##### Why surrounded by air, gaz or vaccum? * **In most optical instruments**, lenses are *surrounding by air*. * **air, gaz and vaccum** have refractive index values in the range "$1.000\pm0.001$, and can be approximated by *$n_{air}=n_{gaz}=n_{vaccum}=1$*
$\Longrightarrow$ same optical behavior in air, gaz and vacuum. #### Types and characterization of thin lenses **Convergent** = **converging** = **convexe** = **positive** lenses ![](lens-convergent-N2-en.jpeg) * Characterized by :
\- **Focal lenght** (usually in cm) always >0 *+* adjective "**converging**"
  or
\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *positive $f'>0$*.
  or
\- Its **vergence** $V$ (in ophtalmology) that is *positive $V>0$*,
with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).
**Divergent** = **diverging** = **concave ** = **negative** lenses ![](lens-divergent-N2-en.jpeg) * Characterized by :
\- **Focal lenght** (usually in cm) always >0 *+* adjective "**diverging**"
  or
\- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *negative $f'<0$*.
  or
\- Its **vergence** $V$ (in ophtalmology) that is *negative $V<0$*,
with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).
### Analytical modeling (_for thin lens surrounded by air, gaz or vaccum_) ##### Thin lens equation **$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$** ##### Transverse magnification expression **$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$** ### Graphical modeling #### Thin lens representation * **optical axis** = *revolution axis* of the lens, positively *oriented* in the direction of propagation of the light (_from the object towards the lens_). * **thins lens representation** :

\- *line segment*, perpendicular to optical axis, centered on the axis with symbolic *indication of the lens shape* at its extremities (_convexe or concave_).

\- **S = C = O** : vertex S = nodal point C = center O of the thin lens $\Longrightarrow$ is used point O.

\- *point O*, intersection of the line segment with optical axis.

\- *object focal point F* and *image focal point F'*, positioned on the optical axis symmetrically with respect to the point O ($f=-f'$) at algebraic distances $\overline{OF}=f$ and $\overline{OF'}=f'$.

\- *object focal plane (P)* and *image focal plane (P')*, planes perpendicular to the optical axis at respectively points $F$ and $F'$. ![](converging-thin-lens-representation.jpeg)
_Converging thin lens representation : $\overline{OF}<0$ , $\overline{OF'}>0$ and $|\overline{OF}|=|\overline{OF'}|$_  ![](diverging-thin-lens-representation.jpeg)
_Divverging thin lens representation : $\overline{OF}>0$ , $\overline{OF'}<0$ and $|\overline{OF}|=|\overline{OF'}|$_ #### Determining conjugate points : ##### Converging thin lens * **Point source located between ∞ et F** ![](Const_lens_conv_point_AavantF.gif) * **Point source located between F et O** ![](Const_lens_conv_point_AentreFO.gif) * **Virtual object point** (will be seen at level foothills, to remove from here). ![](Const_lens_conv_point_AapresO.gif) ##### Diverging thin lens (to be implemented)