--- title: 'Spherical refracting surface : overview' media_order: dioptre-1.gif --- ### Spherical refracting surface modeling. #### Description ![](dioptre-1.gif) with : * arrow : indicates direction of light propagation. * $`n_{ini}`$ : refractive index of the initial medium. * $`n_{fin}`$ : refractive index of the final medium. * $`\overline{SC}`$ : algebraic distance between vertex S and center C of curvature on optical axis. !!!! *BE CAREFUL* :
!!!! In the same way as we use in English the single word "mirror" to qualify a "reflecting surface", in French is use the single word "dioptre" to qualify a "refracting surface". !!!! The term "dioptre" in English is a unit of mesure of the vergence of an optical system. In French, the same unit of measure is named "dioptrie". !!!! So keep in mind the following scheme : !!!! !!!! refracting surface : *EN : refracting surface* , *ES : superficie refractiva* , *FR : dioptre*.
!!!! _A crystal ball forms a spherical refracting surface : un "dioptre sphérique" in French._ !!!! !!!! unit of measure : *EN : dioptre* , *ES : dioptría* , *FR : dioptrie*.
!!!! _My corrective lens for both eyes are 4 dioptres : "4 dioptries" in French._ #### Spherical refracting surface. #### Analytical study A **spherical refracting surface** in analytical paraxial optics is defined by *three quantities* : * **$`n_{ini}`$** : *refractive index of the initial medium* (the medium on the side on the incident light). * **$`n_{fin}`$** : *refractive index of the final medium* (the medium on the side on the emerging light, after crossing the refracting surface). * **$`\overline{SC}`$** : the *algebraic distance between the __vertex S__* (sometimes called "pole", is the centre of the aperture) *and the __center of curvature C__* of the refracting surface. ! *USEFUL* : The whole analytic study below also applies to a plane refracting surface. We just need to remark that a plane surface is a spherical surface whose radius of curvature tends towards infinity. ##### Spherical refracting surface equation **spherical refracting surface equation** = **"conjuction equation" for a spherical refracting surface** **$`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$** ##### Transverse magnification expression 2. I use the **"transverse magnification equation" for a spherical refracting surface**, to calculate the *__algebraic value__ of the transverse magnification* **$`\overline{M_T}`$**, then to derive the *__algebraic length__* **$`\overline{A_{ima}B_{ima}}`$** of the segment $`[A_{ima}B_{ima}]`$, that is the algebraic distance of the point image $`B_{ima}`$ from its orthogonal projection $`A_{ima}`$ on the optical axis. By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**. Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**. I know $`\overline{SA_{obj}}$, $n_{ini}$ and $n_{fin}$, I have previously calculated $`\overline{SA_{ima}}$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$ ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :* ! ! * *conjuction equation :*   $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$. ! ! * *transverse magnification equation :*   $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$    (unchanged). ! ! This generalizes and completes the knowledge you get about plane refracting surfaces seen in your pedagogical paths in plain and hills. #### Graphical study