---
title: Brainstorming partie "au-delà"
published: true
routable: true
visible: false
lessons:
- slug: brainstorming-3-parts
order: 3
---
#### Brainstorming partie "Au-delà"
Un rappel de ce qui est annoncé sur les 3 parties de cours est à :
https://m3p2.com/fr/m3p2_pedagogy/m3p2-pedagogy
##### 1 - Ce dont nous disposons actuellement
Déjà décrit dans le brainstorming de la partie "Principal".
##### 2 - Brainstorming pour cette partie "au-delà" de cours
Les différents propositions sont numérotées : elles commencent par :
*[BB-numéro] : Titre*
_(BB pour Brainstorming Beyond)_
* Pour **réagir à une proposition existante**, rajouter votre commentaire à la suite des autres
en commençant par trois initiales entre parenthèse vous représentants :
(CLM) : commentaire d'untel
*(mes initiales) : mon commentaire*
* Pour **ajouter une proposition**, créez là dans ou à la suite (suivant la logique de la proposition)
des propositions existantes. Pour cela, commencer par un nouveau *[BB-numéro] : Titre*
-------------
**[BB-10] Élément de style**.
(CLE) Les fichiers de cours de chacune des trois parties sont différenciés (textbook pour la partie princiale,
cheatsheet pour la partie synthèse, annex pour la partie au-delà). Pour l'instant aucune personnalisation,
aucune feuille de style spécifique n'est appliquée à ces types de fichier.
Nous pourrons *personnaliser plus le style de chaque partie pour mieux les différencier et identifier*.
Mais déjà, une idée à tester.
Sur le premier prototype, le fond de cette partie au-delà était très légèrement colorée d'un violet clair.
A tester et choisir entre nous.
-----------------
**[BB-20] Différents éléments**.
(CLE) C'est la partie qui permet :
* de dire tout ce qu'on a pas le temps de dire dans
des cours classique, mais qu'on rêverait de dire et qui pourrait motiver plus les étudiants
(au-delà de la simple acquisition de connaissances et compétences).
* de renforcer les explications sur des points particuliers et aïgus de cours (petites vidéos
très courtes?)
* de proposer des défis sur plusieurs jours, pour que l'apprenant puisse réfléchir à
un sujet proposé en dehors du temps d'apprentissage devant l'écran (par exemple réfléchir à
la localisation d'une image en réflexion, en faisant attention à ce qu'on voit en réflexion
dans la vitre d'un métro...)
* proposer des questionnaires, ou petits exercices de compréhension ou permettant d'acquérir
des réflexes (écrit en javascript par exemple)
* proposer des problèmes représentatifs des examens.
Pour organiser ces éléments, il faut les regrouper dans un petit nombre de catégories
facilement identifiables.
Sont proposées les catégories suivantes, mais à débattre, toutes les idées sont bienvenues :
!!!! *DIFFICULT POINT* (contribute, or indicate a difficult point of understanding)
!!!!
!!! *DO YOU MASTER ?*
!!!
!!!
!!! Describe the test.
!!!
!!! Texte du test (et ses images, figures, audio, video, etc ...)
!!! [a figure for the test]
!!! Texte de la question
!!!
!!!
!!! Choix de réponse 1
!!!
!!! Texte si la réponse 1 est choisie
!!!
!!!
!!!
!!! Choix de réponse 2
!!!
!!! Texte si la réponse 2 est choisie
!!!
!!!
!! *BEYOND* (to contribute)
!!
!! *CULTURAL POINT* (contributor)
!!
! *YOUR CHALLENGE* : look at the picture, and think of the right answers to the following questions
!
! _Do not look at the answer, take time to think, a few days if necessary. The time to build your mental representation of the phenomenon, to formulate it in words is important, a thousand times more important than the ephemeral instant where you read the fews words of the solution._
!
!
!
! INDICE "key word"
!
! diffusion
!
!
!
! ANSWER
!
! diffusion
!
------------------------------
##### Quelques exemples
! *YOUR CHALLENGE* : An object (a painting), a physical system (a lensball), how many scenarios and optical systems?
!
! _Skill tested : understanding of physical situations_
!
! 
!
! *Discovery time : 30 minutes*
! *Resolution time : 10 minutes*
!
!
!
! I choose it
!
! A lensball is a simple physical system: a sphere of glass of refractive index $`n=1.5`$ and of radius $`R=5\;cm`$.
!
! A ball lensball is placed in front of a painting. Depending on the position of the observer or the camera,
! the optical system (the sequence of simple optical elements crossed by light between the physical object
! and the observed image) that forms the image differs.
!
! Observe the 3 images of the painting given by the lensball :
!
! Image 1
!
! 
!
! Images 2 (the smallest) and 3
!
! 
!
! For each image of the painting, can you identify the optical system, then specify `
! the characteristics of the various simple elements that constitute the system and their relative distances?
!
! * _The resolution time is the typical expected time to be allocated to this problem if it was part of an examen for an optics certificate._
! * _The discovery time is the expected time required to prepare this challenge if you don't have practice. But take as much time as you need._
!
! <\details>
!
!
! Ready to answer M3P2 team questions for image 1?
!
!
!
!
! Where is the painting located?
!
! * The painting is located on the other side of the lens, in relation to you.
!
!
!
! What is the optical system giving the image of the painting?
!
!
! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.
!
!
!
!
! How do you characterize each of the single optical elements that make up this optical system,
! and their relative distances?
!
!
! * The optical axis is oriented positively in the direction of light propagation
! (from the painting towards the lensball).
!
! * The first spherical refracting surface
! $`DS1`$ encountered by the light has
! the follwing characteristics :
! $`\overline{S_1C_1}=+|R|=+5\;cm`$,
! $`n_{ini}=1`$ and $`n_{fin}=1.5`$.
!
! * The second spherical refracting surface
! $DS2$ encountered by the light has the follwing characteristics :
! $`\overline{S_2C_2}=-|R|=-5\;cm`$ ,
! $`n_{ini}=1.5`$ and $`n_{fin}=1`$
!
! * Algebraic distance between $DS1$ and $DS2$ is : $`\overline{S_1S_2}=+10\;cm`$
!
!
!
!
! If you had to determine the characteristics of the image (position, size), how
! would you handle the problem?
!
!
! * $`DS1`$ gives an image $`B_1`$ of an object $`B`$. This image $`B_1`$ for $`DS1`$
! becomes the object for $`DS2`$. $`DS2`$ gives an image $`B'1`$ of the object $`B_1`$
!
!
!
!
!
!
!
! Ready to answer M3P2 team questions for images 2 and 3?
!
!
!
!
! Where is the painting located?
!
!
! * The painting is located on the same side of the lens as you, behind you.
!
!
!
!
!
! What are the two optical systems at the origin of the two images of the painting? And
! can you characterize each of the single optical elements (+ their relative distances)
! that make up each of these optical systems ?
!
!
! * A first optical system $`OS1`$ is composed of a simple convexe spherical mirror
! (the object is reflected on the front face of the ball lensball). Keaping the optical
! axis positively oriented in the direction of the incident light propagation on the lensball,
! the algebraic value of the mirror radius is : $`\overline{SC}=+5\;c`$.
!
! * The second optical system $`OS2`$ is composed of three simple optical elements :
! 1) The light crosses a spherical refracting surface $`DS1`$ with characteristics :
! $`\overline{S_1C_1}=+|R|=+5\;cm`$ , $`n_{ini}=1`$ and $`n_{fin}=1.5`$.
!
! 2) Then the light is reflected at the surface of the last lensball interface that
! acts like a spherical mirror of characteristics : $`\overline{S_2C_2}=-|R|=-5\;cm`$,
! $`n=1.5`$.
!
! 3) Finally the light crosses back the first interface of the lensball that acts
! like a spherical refracting surface those characteristics are :
! $`\overline{S_3C_3}=+|R|=+5\;cm`$ , $`n_{ini}=1.5$ and $n_{fin}=1`$.
!
! Relative algebraic distances between the different elements of $`OS2`$ are :
!
! $`\overline{S_1S_2}=+10\;cm`$ and $`\overline{S_2S_3}=-10\;cm`$
!
!
!
!
! Which image is associated with each of the optical systems?
!
!
! * It is difficult to be 100% sure before having made the calculations.
!
!
!
!
! Why do we had to take the picture in the darkness, with only the painting
! illuminated behind the camera, to obtain images 2 and 3 ?
!
!
! * At a refracting interface, part of the light incident power is refracted,
! and part is reflected. For transparent material like glass and for visible light,
! the part of the reflected power is small. If the room had been homogeneously
! illuminated, the images 2 and 3 of the painting on the wall behind the camera would
! have been faintly visible compared to the image of the front wall through the lensball.
!
!
!
! *YOUR CHALLENGE* : Looking at a cathedral through a lensball. Can you predict your observation?
!
! _Skill tested : to know how to carry out calculations_
!
! 
!
! *Discovery time : 2 hours*
! *Resolution time : 30 minutes*
!
!
! I choose it
!
! A lensball is a polished spherical ball of radius $`R=5 cm`$, made of glass of refractive
! index value $`n_{glass}=1.5`$. The cathedral is 90 meters high, and you stand with the lensball
! 400 meters from the cathedral. You look at the cathedral through the lens, your eye being at
! 20 cm from the center of the lens. What would you expect to see?
!
! * _The resolution time is the typical expected time to be allocated to this problem_
! _if it was part of an examen for an optics certificate_.
!
! * _The discovery time is the expected time you require to prepare this challenge_
! _if you don't have practice. However, this is just an indication, take as much time as_
! _you need. The time to question yourself serenely about how to handle the problem,_
! _about the method of resolution and its validity, about some possible approximations_
! _if they can be justified, and the time you need to check the equations if you have_
! _not previously memorised them and to perfom the calculation, are important._
!
!
!
! Ready to answer questions ?
!
!
!
!
! What is the scientifical framework you choose to study this problem ?
!
! * All the characteristic sizes in this problem are much bigger than the wavelength of
! the visible radiation ($`\lambda\approx5\mu m`$), so I deal with this problem in the
! framework of geometrical optics, and in the paraxial approximation in order to
! characterize the image.
!
! * The cathedral sustains an angle of $`arctan\dfrac{90}{400}=13°`$ from the lensball.
! This value seems reasonable to justify at first order the use of the paraxial approximation
! (_we usually consider that angles of incidence would not exceed 10° on the various simple
! optical element encountered between the objet (here the cathedral) and the final image
! (retina of the eye or matrix sensor of a camera_).
!
!
!
!
! Describe the optical system for this use of the lensball.
!
!
! * The lensball breaks down into two refracting spherical surfaces sharing the same
! centre of curvature C and of opposite radius (in algebraic values).
!
!
!
!
!
! What is your method of resolution ?
!
! * You don't use general equations 3a and 3b for a thick lens, they are too complicated
! to remind, and you don't have in m3p2 to "use" but to "build a reasoning". And you don't
! know at this step how to handle with centered optical systems.
!
! * But this system is simple, so you will calculate the image of the cathedral by the
! first spherical refracting surface $`DS_1`$ encountered by the light from the cathedral $`DS_1`$.
! Then this image becomes the object for the second spherical refracting surface $`DS_2`$
! and so I can determine position and size of the final image.
!
! * For a spherical refracting surface, general equations are :
! $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$
! for the position.
! $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$
! for the transverse magnification.
!
!
!
!
!
! How do you set down your calculations?
!
!
! * The optical axis is the straight line that joins the center C of the lens to my eye,
! positively oriented in the direction of light propagation light for that observation,
! so from the cathedral to my eye.
! * First spherical refrating surface $`DS1`$ : $`\overline{S_1C_1}=+5\:cm`$, $`n_{ini}=1`$ (air)
! and $`n_{fin}=1.5`$ (glass).
! Second spherical refrating surface $`DS2`$ : $`\overline{S_1C_1}=-5\:cm`$, $`n_{ini}=1.5`$ (glass)
! and $`n_{fin}=1`$ (air)
! Distance between $`DS1`$ and $`DS2`$ vertices : $`\overline{S_1S_2}=+10\:cm`$
! Object cathedral $`AB`$ : $`\overline{AB}=90\;m`$ and $`\overline{S_1A}=-400\;m`$
! Let us write $`\overline{A_1B_1}`$ the intermediate image (the image of the cathedral
! given by $`DS1`$.
!
! * Specific equations for $`DS1`$ are :
! $`\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{\overline{S_1A}}=\dfrac{0.5}{\overline{S_1C_1}}`$ (équ. DS1a),
! and $`\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}`$ (équ. DS1b)
! Specific equations for $`DS2`$ are :
! $`\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{\overline{S_2A_1}}=-\dfrac{0.5}{\overline{S_2C_2}}`$ (équ. DS2a), and
! $`\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}`$ (équ. DS2b)
! The missing link between these two sets of equations is :
! $`\overline{S_2A_1}=\overline{S_2S_1}+\overline{S_1A_1}=\overline{S_1A_1}-\overline{S_1S_2}`$.
!
!
!
!
!
! Do you see some approximation that can be done ?
!
! * In the visible range, refractive index values of transparent material are in the range [1 ; 2],
! then the focal lengthes of a spherical refractive surface (object as well as image) are
! expected to remain in the same order of magnitude than the radius of curvature,
! so a few centimeters in this case (we talk in absolute value here).
!
! * We can if we want just check this fact for $`DS1`$ ($`|S_1C_1|=5\;cm`$) using équation DS1 :
! \- considering $`\overline{S_1A_1}\longrightarrow\infty`$ to obtain the object focal length
! $`\overline{S_1F_1}`$} we get :
! $`-\dfrac{1}{\overline{S_1F_1}}=\dfrac{0.5}{\overline{S_1C_1}}`$
! $`\Longrightarrow=\overline{S_1F_1}=-10\;cm`$
! \- considering $`\overline{S_1A}\longrightarrow\infty`$ to obtain the image focal length
! $`\overline{S_1F'_1}`$ we get :
! $`\dfrac{1.5}{\overline{S_1F'_1}}=\dfrac{0.5}{\overline{S_1C_1}}\Longrightarrow\overline{S_1F'_1}=+15\;cm`$
!
! * The distance of the cathedral from the lensball $`|\overline{S_1A}|=90\;m`$ is huge
! compared to the object focal length $`|\overline{S_1F_1}|=10\;cm`$, we can consider
! that the cathedral is at infinity from the lensball and so the image $`\overline{A_1B_1}`$
! of the cathedral stands quasi in the image focal plane of $`DS1`$ :
! $`\overline {S_1A_1}=\overline {S_1F'_1}=+15cm`$. So we can directly use equation DS2a with :
! $`\overline{S_2A_1}=\overline{S_2F'_1}=\overline{S_2S_1}+\overline{S_1F'_1}`$
! $`=\overline{S_1F'_1}-\overline{S_1S_2}=+15-10=+5\;cm`$..
!
!
!
!
! Where is the image and how tall it is ?
!
!
! * To perform calculation, you must choose a unic lenght unit in your calculation,
! here $`cm`$ or $`m`$. We choose $`m`$ below.
! * Equation DS1a gives :
! $`\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{-400}=\dfrac{0.5}{0.05}`$ $`\Longrightarrow\overline{S_1A_1}=0.15\;m`$
! With more than 2 significant figures, your calculator would tell you $`0.150037`$,
! which nearly exactly the value of $`\overline{S_1F'_1}=+0.15\;m`$, so the approximation
! $`\overline{S_1A_1}=\overline{S_1F'_1}`$ you could have done is fully justified.
!
! * Equation DS2a gives :
! $`\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{-0.1+0.15}=\dfrac{-0.5}{-0.05}`$
! $`\Longrightarrow\overline{S_2A'}=0.025\;m`$
!
! * The final image is real, and stands 2.5 cm in front of the lensball in the side
! of your eye. Do not bring your eye or camera too close of the lensball \!
!
! * The size of an image (transversally to the optical axis) is given by the transverse
! magnification $`M_T`$. By Definition $`M_T`$ is the ratio of the algebraic size of
! the final image $`\overline{A'B'}`$ to the algebraic size of the initial object $`\overline{AB}`$.
! With an intermediate image, it can be break down :
! $`M_T=\dfrac{\overline{A'B'}}{\overline{AB}}`$
! $`=\dfrac{\overline{A'B'}}{\overline{A_1B_1}}\times\dfrac{A_1B_1}{\overline{AB}}`$
! It is the product of the transverse magnifications of the cathedral introduced
! by the two spherical refracting surfaces of the lensball.
! $`\overline{M_T}`$ introduced by $`DS1`$ is
! $`\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}`$
! $`=\dfrac{+0.15}{1.5\times(-400)}=-0.00025`$
! $`\overline{M_T}`$ introduced by $`DS2`$ is
! $`\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}`$
! $`=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_1A_1}-\overline{S_1S_2}}`$
! $`=\dfrac{1.5\cdot0.025}{+0.15-0.10} =0.75`$
! So $`\overline{M_T}`$ introduced by the lensball is :
! $`\overline{M_T}=-0.00025\times0.75`$ $`=-0.00019\approx-1.9\cdot10^{-4}`$
! The image is $`\dfrac{1}{-1.9\cdot10^{-4}}\approx5300`$ smaller than the cathedral.
! $`M_T=\dfrac{\overline{A'B'}}{\overline{AB}}\approx8\cdot10^{-4}`$
! $`\Longrightarrow\overline{A'B'}=\overline{AB} \times M_T`$
! $`=1.9\cdot10^{-4} \times 90\;m=-0.017\;m`$
! The image is 1.7 cm height and it is reversed.
!
!
!
!
!
! What is the apparent magnification of the cathedral ?
!
! * Apparent magnification = angular magnification = magnifying power.
!
! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh
! cathedral sustends the apparent angles of $`\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°`$
! at your eye.
!
! * The image of the cathedral is 1.7 cm heigth and is located between the lens
! (from its vertex $`S2`$) and your eyes and at 2.5cm from the lens. If your eye is
! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values).
! Thus the image of the catedral subtends the apparent angle
! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye.
!
! * The apparent magnification $`M_A`$ of the cathedral throught the lensball for my
! eye in that position is
! $`M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44`$.
! Taking into account that the image is reversed, the algebraic value of the apparent
! magnification is $`\overline{M_A}=-0.44`$.
!
! * You could obtained directly this algebraic value of $`M_A`$ by considering algebraic
! lengthes and angles values in the calculations :
! $`\overline{M_A}=\dfrac{\overline{\alpha'}}{\overline{\alpha}}`$
! $`=\dfrac {arctan\left(\frac{-0.017}{-0.175}\right)} {arctan\left(\frac{90}{-400}\right)}`$ $`=\dfrac{0.097}{-0.221}=-0.44`$
!
! 
! _Cathedral of Orleans (France)_
!
!
!
!
!! *BEYOND* : The gravitationnal lensball (or Einstein's ring), due to a black hole or a galaxy.
!! Similarities, and differences.
!!
!! 
!!
!!
!!
!! To see
!!
!! still to be done, in progress.
!!