🇨🇴 Una base de datos de cursos en diferentes lenguajes. 🇫🇷 Une base de données de cours dans différents langages. 🇳🇴 En database med kurs på forskjellige språk. 🇺🇸 A flat-file database of courses in multiple languages.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5.0 KiB

title media_order published routable visible
The Fermat's principle F stationnarite3_650.jpg false false false

!!!! IN CONSTRUCTION ! !!!! !!!! very imperfect course, !!!i not validated by the teaching team


Optical path

optical path $\delta$      $=$ euclidean length $s$     $\times$    refractive index $n$

  • $\Gamma$ : path (solid line) between 2 fixed points A and B
  • $\mathrm{d}s_P$ : element of infinitesimal length at point P on path $\Gamma$
  • $ n_P$ : refractive index at point P
  • $\mathrm{d}\delta_P$ : infinitesimal optical path at point P on path $\Gamma$

Optical path along a path between 2 fixed points A and B : **$\delta;=;\int_{P \in \Gamma}\mathrm{d}\delta_P;=;\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P$**

  • $\delta$ $=\int_{\Gamma}n\cdot\mathrm{d}s;=;\int_{\Gamma}\frac{c}{v}\cdot\mathrm{d}s$ = $c;\int_{\Gamma}\frac{\mathrm{d}s}{v}$ = *$;c;\tau$*
  • $\delta$ is proportional to the travel time.

Stationarity

  • $\Gamma_o$ : path between two fixed point A and B
  • $\lambda_i$ : parameter that defines a path
  • ${\Large\tau}$ : grandeur physique caractérisant un chemin

${\Large\tau}(\Gamma_o)$ stationnaire    ${\Longleftrightarrow}:::::\mathrm{d}{\Large\tau}(\Gamma_o)=\sum_i\frac{\partial{\large\tau}}{\partial\lambda_i}(\Gamma_o);\mathrm{d}\lambda_i=0$

Fermat's principle

Between two points of its path, a ray of light follows the path(s) that present(s) a stationary travelling time.

or (equivalent )

Between two points of its path, a ray of light follows the path(s) that present(s) a stationary optical path.

Examples

Spherical concave mirror
  • A : point source that emits or diffuses lights in all directions.
  • B : fixed point in space.

For this mirror, according to the positions of points A and B :

  • several extrema : here 2 maxima et 1 minimum $\Longrightarrow$ several ligh raysfrom A go through B : here 3 rays :

!!!! Be careful :
!!!! Understand this example of application of Fermat's theorem. It says that the 3 trajectories drawn between A and B satisfy the Fermat's principle and therefore are possible trajectories between these two points to the exclusion of any other trajectory. If point A is a point source that emits light in all directions, then these 3 paths will be followed by light. If a ray goes through A with one of these 3 directions, then the corresponding trajectory will be realized. !!!! But the points A and B are not conjugate points within th meaning of paraxial optics : B is not the image point of point source A, and vice versa. !!! It is the same for all the animations of this chapter "examples".

  • other positions of A and B : 1 minimum $\Longrightarrow$ 1 unique ray from A goes trhough B .

  • other positions of A and B : 1 maximum $\Longrightarrow$ 1 unique ray from A goes trhough B .

Elliptical concave mirror.
  • Elliptical mirror : mirror whose surface is part of an ellipsoid of revolution.

!

! ! Ellipsoid and ellipsoid of revolution ! ! Est-il nécessaire de rapeller ici ce que sont les ellipsoïde et ellipsoïde de révolution? rappel en texte? ou 2 liens vers Wikipédia? ou lien vers une autre page m3p2 sur les quadriques en géométrie euclidienne (page encore à créer) ? Si oui, dans une partie Beyond, parler du miroir elliptique concave acoustique, c'est impressionnant quand on le vit. !

  • between the two geometrical foci" F et F' of an elliptical mirror, all path are stationary : they have the same optical path
    $\Longrightarrow$ : *all the rays coming from one of the two foci and intercepting the mirror converge towards the second geometric focus *.

!!!! BE CAREFUL : !!! the "geometric foci" of the ellipsoid of revolution, the "geometric surface" in which the surface of the elliptical mirror is inscribed, do not correspond to the optical foci (the two focal points) of the elliptical mirror as they will be defined in the "optical sense" of the word "focus" in the remainder of this course.