🇨🇴 Una base de datos de cursos en diferentes lenguajes. 🇫🇷 Une base de données de cours dans différents langages. 🇳🇴 En database med kurs på forskjellige språk. 🇺🇸 A flat-file database of courses in multiple languages.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

144 lines
6.2 KiB

  1. ---
  2. title: 'The thin lens'
  3. media_order: 'Const_lens_conv_point_AapresO.gif,lens-convergent-N2-en.jpeg,Const_lens_conv_point_AentreFO.gif,lens-convergent-N2-es.jpeg,lens-convergent-N2-fr.jpeg,Const_lens_conv_point_AavantF.gif,lens-divergent-N2-es.jpeg,lens-divergent-N2-fr.jpeg,lens-divergent-N2-en.jpeg,diverging-thin-lens-representation.jpeg,converging-thin-lens-representation.jpeg'
  4. ---
  5. ### What is a lens ?
  6. #### Objective
  7. * initial : to **focuse or disperse the light**.
  8. * ultimate : to **realize images**, alone or as part of optical instruments.
  9. #### Physical principle
  10. * **uses the refractive phenomenon**, described by the Snell-Descartes' law.
  11. #### Constitution
  12. * Piece of **glass, quartz, plastic** (for visible and near infrared and UV).
  13. * **Rotationally symmetrical**.
  14. * **2 polished surfaces** perpendicular to its axis of symmetry, **either or both curved** (and most often spherical).
  15. <!--image to build : a thin lens-->
  16. #### Interest in optics : thin lenses
  17. * **Thin lens** : *thickness << diameter*
  18. * Thins lens : **most important simple optical element** that is *used alone or combined in serie in most optical instruments* : magnifying glasses, microscopes, tele and macro objectives, camera, refracting telescopes.
  19. <!--image to build N1 ou N2 : a composition :
  20. upper medium : a unic thin lens
  21. upper part towards utilization of a unique lens : magnigfying glass and eyeglasses
  22. lower medium : small serie of centered naked lenses
  23. lower part toward utilization of combined lenses : macroscope, camera (apparatus and objective of a cellular), refracting telescope, teleopbjective-->
  24. ### Modeling a thin lens surrounded by air, gaz or vaccum.
  25. #### Why modeling ?
  26. * To **understand, calculate and predict images** of objects given by thin lenses
  27. <!--picture when we see the object, the lens and the image-->
  28. ##### Why surrounded by air, gaz or vaccum?
  29. * **In most optical instruments**, lenses are *surrounding by air*.
  30. * **air, gaz and vaccum** have refractive index values in the range "$1.000\pm0.001$, and can be approximated by *$n_{air}=n_{gaz}=n_{vaccum}=1$*<br>
  31. $\Longrightarrow$ same optical behavior in air, gaz and vacuum.
  32. #### Types and characterization of thin lenses
  33. **Convergent** = **converging** = **convexe** = **positive** lenses
  34. ![](lens-convergent-N2-en.jpeg)
  35. * Characterized by :<br>
  36. \- **Focal lenght** (usually in cm) always >0 *+* adjective "**converging**"<br>
  37. &nbsp;&nbsp;or<br>
  38. \- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *positive $f'>0$*.<br>
  39. &nbsp;&nbsp;or<br>
  40. \- Its **vergence** $V$ (in ophtalmology) that is *positive $V>0$*,<br>
  41. with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).<br>
  42. **Divergent** = **diverging** = **concave ** = **negative** lenses
  43. ![](lens-divergent-N2-en.jpeg)
  44. * Characterized by :<br>
  45. \- **Focal lenght** (usually in cm) always >0 *+* adjective "**diverging**"<br>
  46. &nbsp;&nbsp;or<br>
  47. \- Its **image focal length** $f'$ (in *algebraic value*, usually in cm), that is *negative $f'<0$*.<br>
  48. &nbsp;&nbsp;or<br>
  49. \- Its **vergence** $V$ (in ophtalmology) that is *negative $V<0$*,<br>
  50. with $V (\delta)=\dfrac{1}{f'(m)}$ ($f'$ being expresssed in m "meter" and $V$ in $\delta$ "dioptre", so $\delta=m^{-1}$).<br>
  51. <!-- suppressed
  52. #### What physical framework, model and technics ?
  53. * _Framework : Geometrical Optics = Light rays optics $\longrightarrow$ foothills stage_.
  54. * _Model : paraxial model = gaussian model $\longrightarrow$ foothills stage_.
  55. * Model splits in *two different technics (but equivalent)* :<br> **graphical modeling** AND **analytical modeling**
  56. * *Differences between model predictions and experimental observations* : ** optical aberrations** (_under control, minimized and negligeable in optical instruments_).
  57. -->
  58. ### Analytical modeling
  59. (_for thin lens surrounded by air, gaz or vaccum_)
  60. ##### Thin lens equation
  61. **$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$**
  62. ##### Transverse magnification expression
  63. **$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$**
  64. ### Graphical modeling
  65. #### Thin lens representation
  66. * **optical axis** = *revolution axis* of the lens, positively *oriented* in the direction of propagation of the light (_from the object towards the lens_).
  67. * **thins lens representation** :<br><br>
  68. \- *line segment*, perpendicular to optical axis, centered on the axis with symbolic *indication of the lens shape* at its extremities (_convexe or concave_).<br><br>
  69. \- **S = C = O** : vertex S = nodal point C = center O of the thin lens $\Longrightarrow$ is used point O.<br><br>
  70. \- *point O*, intersection of the line segment with optical axis.<br><br>
  71. \- *object focal point F* and *image focal point F'*, positioned on the optical axis symmetrically with respect to the point O ($f=-f'$) at algebraic distances $\overline{OF}=f$ and $\overline{OF'}=f'$.<br><br>
  72. \- *object focal plane (P)* and *image focal plane (P')*, planes perpendicular to the optical axis at respectively points $F$ and $F'$.
  73. ![](converging-thin-lens-representation.jpeg)<br>
  74. _Converging thin lens representation : $\overline{OF}<0$ , $\overline{OF'}>0$ and $|\overline{OF}|=|\overline{OF'}|$_
  75.  ![](diverging-thin-lens-representation.jpeg)<br>
  76. _Divverging thin lens representation : $\overline{OF}>0$ , $\overline{OF'}<0$ and $|\overline{OF}|=|\overline{OF'}|$_
  77. #### Determining conjugate points :
  78. ##### Converging thin lens
  79. **Towards geogebra animations** :<br>
  80. \- Graphical construction<br>
  81. [Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/zqwazusz)<br>
  82. \- Graphical construction and light pencils <br>
  83. [Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/wkrw5qgm)<br>
  84. \- Graphical construction and transverse magnification<br>
  85. [Click here for geogebra animation](https://www.geogebra.org/material/iframe/id/xwbwedft)<br>
  86. * **Point source located between &infin; et F**
  87. ![](Const_lens_conv_point_AavantF.gif)
  88. * **Point source located between F et O**
  89. ![](Const_lens_conv_point_AentreFO.gif)
  90. * **Virtual object point** (will be seen at level foothills, to remove from here).
  91. ![](Const_lens_conv_point_AapresO.gif)
  92. ##### Diverging thin lens
  93. (to be implemented)