|
|
|
@ -235,8 +235,9 @@ in orthonormal Cartesian coordinate : <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right) |
|
|
|
+\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right) |
|
|
|
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$ <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \left \| |
|
|
|
\begin{array}{r c l} |
|
|
|
|
|
|
|
$`\Delta\;\overrightarrow{U} = \left | |
|
|
|
\begin{array} |
|
|
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\ |
|
|
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\ |
|
|
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} |
|
|
|
|