|
|
@ -759,7 +759,7 @@ Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X |
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle |
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle |
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}` = \Phi_E`$ |
|
|
|
|
|
|
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS} = \Phi_E`$ |
|
|
|
|
|
|
|
|
$`\Phi_E`$ : Flujo eléctrico / |
|
|
$`\Phi_E`$ : Flujo eléctrico / |
|
|
|
|
|
|
|
|
@ -789,7 +789,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot |
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
= fem = \mathcal{C}_E`$ |
|
|
= fem = \mathcal{C}_E`$ |
|
|
|
|
|
|
|
|
$`\mathcal{C}_E` = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido* |
|
|
|
|
|
|
|
|
$`\mathcal{C}_E = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido* |
|
|
|
|
|
|
|
|
$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$ |
|
|
$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
|
|