Browse Source

Update textbook.en.md

keep-around/08ec6b07f452ca8b59e14b7e73d758042bc1d43f
Claude Meny 6 years ago
parent
commit
08ec6b07f4
  1. 4
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

4
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -759,7 +759,7 @@ Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}` = \Phi_E`$
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS} = \Phi_E`$
$`\Phi_E`$ : Flujo eléctrico /
@ -789,7 +789,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= fem = \mathcal{C}_E`$
$`\mathcal{C}_E` = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido*
$`\mathcal{C}_E = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido*
$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$

Loading…
Cancel
Save