Les vecteurs déplacement élémentaire $`\partial\overrightarrow{OM}_x , \partial\overrightarrow{OM}_y , \partial\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
Les vecteurs déplacement élémentaire $`d\overrightarrow{OM}_x , d\overrightarrow{OM}_y , d\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$
Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$
forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes.
forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes.
@ -287,7 +287,7 @@ En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<b
\- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br>
\- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br>
\- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression
\- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
Les composantes d'un vecteur position sont appelées coordonnées, $x, y, z`$ sont les coordonnées cartésiennes du point $`M`$.
Les composantes d'un vecteur position sont appelées coordonnées, $`x, y, z`$ sont les coordonnées cartésiennes du point $`M`$.