|
|
@ -0,0 +1,43 @@ |
|
|
|
|
|
--- |
|
|
|
|
|
title : Ensembles, relations, algèbre de Boole |
|
|
|
|
|
published : false |
|
|
|
|
|
visible : false |
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
!!!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! Nous avons besoin de faire en parallèle les mathématiques...<br> |
|
|
|
|
|
! Il faut faire un parallèle entre les "outils mathéatiques" utiles aux physiciens |
|
|
|
|
|
et leur présentation plus aboutie et rigoureuse en mathématique. |
|
|
|
|
|
|
|
|
|
|
|
------------ |
|
|
|
|
|
|
|
|
|
|
|
## Ensembles et sous-ensembles |
|
|
|
|
|
Sets and subsets |
|
|
|
|
|
Conjuntos y subconjuntos |
|
|
|
|
|
|
|
|
|
|
|
## Applications, fonctions |
|
|
|
|
|
Binary relations, functions |
|
|
|
|
|
Relaciones y funciones |
|
|
|
|
|
|
|
|
|
|
|
Binary relation from a set A to a set B : is a set of ordered pairs, (m, n), |
|
|
|
|
|
or m and n, where m is from the set M, n is from the set N, and m is related to n by some rule. |
|
|
|
|
|
Function f : binary relation in which each element of a set A (the domain of f) is related to exactly |
|
|
|
|
|
one element (its image) of an other set B. A function is a relation between two elements of |
|
|
|
|
|
two given sets condition that for each element in the domain there's one and only one image |
|
|
|
|
|
|
|
|
|
|
|
Relacion binario : correspondencia de elementos entre dos conjuntos. |
|
|
|
|
|
función : relación en donde a cada elemento de un conjuto (A) le corresponde |
|
|
|
|
|
uno y sólo un elemento de otro conjunto (B), a cada elemento del conjunto A (el dominio) se la asigna |
|
|
|
|
|
un único elemento (su imagen) del conjunto B (el codominio/contradominio). |
|
|
|
|
|
|
|
|
|
|
|
Bijection |
|
|
|
|
|
|
|
|
|
|
|
## Relations d'équivalence |
|
|
|
|
|
|
|
|
|
|
|
## Relations d'ordre |
|
|
|
|
|
|
|
|
|
|
|
## Treillis |
|
|
|
|
|
|
|
|
|
|
|
## Algèbre de Boole |