Browse Source

Update textbook.fr.md

keep-around/1aa3a31923d1bc8321e78469d0fd5abcfe9de6e9
Claude Meny 5 years ago
parent
commit
1aa3a31923
  1. 22
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

22
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

@ -509,10 +509,30 @@ tenseur de courbure, tenseur énergie-impulsion, ...
##### Componentes de un producto vectorial en base ortonormal / Composantes d'un produit vectoriel dans une base orthonormée / Components of a vector product in an orthonormal basis
"$`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée.
$`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée
$`\quad\Longrightarrow`$
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we should use :
$`\overrightarrow{U}=\left(\begin[array](l)U_1//U_2//U_3)\end[array]\right)`$
méthode des produits en croix :
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04
$`\overrightarrow{U}=\begin\left
method similar to the sum used to obtain the determinant of a matrix :
**$`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + ... + U_n\,V_n = \sum_{i=1}^n\;U_i\,V_i`$**

Loading…
Cancel
Save