|
|
@ -356,19 +356,14 @@ $`fem = \mathcal{C}_E = \mathcal{E} |
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
|
Stokes' theorem = |
|
|
|
|
|
|
|
|
Stokes' theorem , for all vectorial field $`\vec{X}`$ : |
|
|
|
|
|
|
|
|
for all vectorial field $`\vec{X}`$, |
|
|
|
|
|
|
|
|
|
|
|
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle |
|
|
|
|
|
|
|
|
$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle |
|
|
\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}= |
|
|
|
|
|
|
|
|
$`\displaystyle\oint_{\Gamma}\overrightarrow{H} \cdot \overrightarrow{dl}= |
|
|
\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$ |
|
|
\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$ |
|
|
$`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|