Browse Source

Update textbook.fr.md

keep-around/246bd55a0ac31102a3feab52f86a3cb5e4d05482
Claude Meny 5 years ago
parent
commit
246bd55a0a
  1. 11
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

11
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

@ -356,19 +356,14 @@ $`fem = \mathcal{C}_E = \mathcal{E}
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem =
Stokes' theorem , for all vectorial field $`\vec{X}`$ :
for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}=
$`\displaystyle\oint_{\Gamma}\overrightarrow{H} \cdot \overrightarrow{dl}=
\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$
$`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$

Loading…
Cancel
Save