|
|
|
@ -297,25 +297,13 @@ $`\overrightarrow{U}`$ et $`\overrightarrow{V}`$ sont colinéaires |
|
|
|
$`\quad\Longrightarrow\quad ...`$ |
|
|
|
|
|
|
|
$`\overrightarrow{U}`$ et $`\overrightarrow{V}`$ sont colinéaires |
|
|
|
$`\;\Longrightarrow\left|\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{V}=+||\overrightarrow{U}||\cdot |
|
|
|
||\overrightarrow{V}||\text{si}\,\widehat{\overrightarrow{U},\overrightarrow{V}}=0 |
|
|
|
$`\;\Longrightarrow\left|\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{V}=+\;||\overrightarrow{U}||\cdot |
|
|
|
||\overrightarrow{V}||\;\text{si}\,\widehat{\overrightarrow{U},\overrightarrow{V}}=0 |
|
|
|
\\ \, |
|
|
|
\\ |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=-||\overrightarrow{U}||\cdot||\overrightarrow{V}|| |
|
|
|
\text{si}\, \widehat{\overrightarrow{U},\overrightarrow{V}}=\pi\end{array}\right.`$ |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=-\;||\overrightarrow{U}||\cdot||\overrightarrow{V}|| |
|
|
|
\;\text{si}\, \widehat{\overrightarrow{U},\overrightarrow{V}}=\pi\end{array}\right.`$ |
|
|
|
|
|
|
|
$`\overrightarrow{U}`$ et $`\overrightarrow{V}`$ sont colinéaires |
|
|
|
$`\;\Longrightarrow\left|\overrightarrow{U}\cdot\overrightarrow{V}=+||\overrightarrow{U}||\cdot |
|
|
|
||\overrightarrow{V}|| \\ |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=-||\overrightarrow{U}||\cdot||\overrightarrow{V}|| |
|
|
|
\right.`$ |
|
|
|
|
|
|
|
$` \underline{\overrightarrow{B}}^{\,0}_{\,ref}=\left|\begin{array}{l} +\,B_{ref}^0\,cos\,\theta_{ref} |
|
|
|
\\ :, |
|
|
|
\\ +\,B_{ref}^0\,sin\,\theta_{ref} \end{array}\right.\quad , \quad `$ |
|
|
|
|
|
|
|
$` \underline{\overrightarrow{B}}^{\,0}_{\,trans}=\left|\begin{array}{l} -\,B_{trans}^0\,cos\,\theta_{trans} \\ 0 |
|
|
|
\\ +\,B_{trans}^0\,sin\,\theta_{trans} \end{array}\right. `$ , |
|
|
|
|
|
|
|
##### Producto escalar de dos vectores ortogonales /Produit scalaire de 2 vecteurs orthogonaux / |
|
|
|
|
|
|
|
|