|
|
@ -329,12 +329,12 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta |
|
|
[EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :<br> |
|
|
[EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :<br> |
|
|
|
|
|
|
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS |
|
|
|
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
|
$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS |
|
|
|
|
|
= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} |
|
|
|
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
|
|
|
|
|
|
$`\displaystyle\iint_{S} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} |
|
|
|
|
|
= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
= fem = \mathcal{C}_E`$ |
|
|
= fem = \mathcal{C}_E`$ |
|
|
|
|
|
|
|
|
[ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :<br> |
|
|
[ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :<br> |
|
|
@ -344,7 +344,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot |
|
|
|
|
|
|
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
$`fem = \mathcal{C}_E = \mathcal{E} |
|
|
$`fem = \mathcal{C}_E = \mathcal{E} |
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
|
|
|
|
|
|
= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right) |
|
|
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right) |
|
|
= - \dfrac{\partial \Phi_B}{\partial t}`$ |
|
|
= - \dfrac{\partial \Phi_B}{\partial t}`$ |
|
|
|
|
|
|
|
|
|