@ -153,7 +153,8 @@ _other proposal, or improve in the text: _
* *COOSYS-120*
Les **coordonnées cartésiennes $`\mathbf{x_M , y_M , z_M}`$** du point $`M`$ sont les
[FR]
(CME): Les **coordonnées cartésiennes $`\mathbf{x_M , y_M , z_M}`$** du point $`M`$ sont les
distances algébriques $`\overline{Om_x}`$, $`\overline{Om_y}`$ et $`\overline{Om_z}`$ mesurées depuis le point origine $`O`$ jusqu'à chacun des points $`m_x`$, $`m_y`$ et $`m_z`$.
@ -166,7 +167,8 @@ Les coordonnées $`x , y , z`$ sont des **longueurs** algébriques, dont l'**uni
* *COOSYS-130*
Chaque point $`M`$ de l'espace est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cartésiennes. On écrit : $`M=M(x_M,y_M,z_M)`$.
[FR]
(CME): Chaque point $`M`$ de l'espace est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cartésiennes. On écrit : $`M=M(x_M,y_M,z_M)`$.
Si le point est un point quelconque, on simplifie :
**Tout l'espace** est couvert par les coordonnées cartésiennes lorsque chacune varie de façon indépendante des autres dans son propre domaine de variation. Leurs domaines de variation sont :
[FR]
(CME): **Tout l'espace** est couvert par les coordonnées cartésiennes lorsque chacune varie de façon indépendante des autres dans son propre domaine de variation. Leurs domaines de variation sont :
!!!! Attention : Cette propriété que les longueurs élémentaires $`dl_{\alpha}`$ s'identifie à la variation infinitésimale de la coordonnée $`d\alpha`$ correspondante est une propriété des systèmes de coordonnées cartésiennes :
Les vecteurs déplacement élémentaire $`d\overrightarrow{OM}_x , d\overrightarrow{OM}_y , d\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
[FR]
(CME): Les vecteurs déplacement élémentaire $`d\overrightarrow{OM}_x , d\overrightarrow{OM}_y , d\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$
forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes.
@ -283,7 +291,8 @@ base orthogonale indépendante de la position de $`M`$
* *COOSYS-190*
[FR] Un repère cartésien, noté $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$,
[FR]
(CME): Un repère cartésien, noté $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$,
est l'ensemble formé par un point $`O`$ origine des coordonnées et une base vectorielle cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.
En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<br>
@ -296,7 +305,8 @@ Les composantes d'un vecteur position sont appelées coordonnées, $`x, y, z`$ s
* *COOSYS-200*
Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br>
[FR]
(CME): Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br>
$`G_x, G_y, G_z`$ sont appelées composantes de la grandeur physique $`G`$ dans la base $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
Exemples grandeurs physiques vectorielles $`G`$ associée à un point $`M`$ :<br>
@ -320,7 +330,8 @@ Le vecteur $`\overrightarrow{OM}`$ en coordonnées cartésiennes s'écrit en fon
* *COOSYS-220*
La norme du vecteur $`d\overrightarrow{OM}_x=\overrightarrow{dl_x}`$
[FR]
(CME): La norme du vecteur $`d\overrightarrow{OM}_x=\overrightarrow{dl_x}`$
est l'élément de longueur $`dl_x`$, donc le vecteur $`\overrightarrow{e_x}`$ s'écrit :
\- Tout point $`M`$ de l'espace est projeté orthogonalement sur le plan $`xOy`$ conduisant au point $`m_{xy}`$,
et sur l'axe $`Oz`$ conduisant au point $`m_z`$.
@ -495,7 +513,8 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
* *COOSYS-320*
*Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
[FR]
(CME): *Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
\- Les coordonnées **$`\rho`$ **et **$`z`$** sont des *longueurs*, dont l'*unité S.I.* est le mètre, de symbole *$`m`$*.<br>
\- La coordonnée **$`\varphi`$** est un angle, dont l'*unité S.I.* est le radian, de symbole *$`rad`$*.
@ -506,7 +525,8 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
* *C0OSYS-330*
\- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
[FR]
(CME): \- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
\- Au point origine $`O`$ est attribué les coordonnées cylindriques $`(0 , 0 , 0)`$.
\- Escribimos / on écrit / we write : $`M(\rho_M,\varphi_M,z_M)`$