|
|
@ -518,16 +518,17 @@ we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ie |
|
|
$`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$ |
|
|
$`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$ |
|
|
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? |
|
|
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? |
|
|
|
|
|
|
|
|
* [ES] <br> |
|
|
|
|
|
|
|
|
c |
|
|
[FR] méthode des produits en croix :<br> |
|
|
[FR] méthode des produits en croix :<br> |
|
|
$`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ |
|
|
$`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ |
|
|
$`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ |
|
|
$`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ |
|
|
$`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$ |
|
|
$`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$ |
|
|
$`\quad\begin{pmatrix}U_2 V_3 - U3 V2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ |
|
|
|
|
|
|
|
|
|
|
|
method similar to the sum used to obtain the determinant of a matrix : |
|
|
|
|
|
|
|
|
$`\quad\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ |
|
|
|
|
|
|
|
|
$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\ |
|
|
|
|
|
|
|
|
* [ES] <br> |
|
|
|
|
|
[FR] <br> |
|
|
|
|
|
[EN] method similar to the sum used to obtain the determinant of a matrix :<br> |
|
|
|
|
|
<br>$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\ |
|
|
U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$ |
|
|
U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|