Browse Source

Update textbook.fr.md

keep-around/5092a5a3a628275dcfe0c4eaaef0b418c95588a7
Claude Meny 6 years ago
parent
commit
5092a5a3a6
  1. 2
      01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md

2
01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md

@ -252,7 +252,7 @@ je peux maintenant calculer la composante selon du vecteur rotationnel du champ
vectoriel au point M. En reprenant la définition (1), j'obtiens vectoriel au point M. En reprenant la définition (1), j'obtiens
$`\overrightarrow{rot} \; \overrightarrow{X_M} \cdot \overrightarrow{e_z} $`\overrightarrow{rot} \; \overrightarrow{X_M} \cdot \overrightarrow{e_z}
=\lim_{C \to 0} \: \dfrac{\oint_{ABCD} \overrightarrow{X} \cdot \overrightarrow{dl}}{\iint_{ABCD} dS}`$
= \lim_{C \to 0} \; \dfrac{\oint_{ABCD} \overrightarrow{X} \cdot \overrightarrow{dl}}{\iint_{ABCD} dS}`$
$`=\left.\dfrac{\partial Y}{\partial y}\right|_M -\left.\dfrac{\partial X}{\partial y}\right|_M`$ $`=\left.\dfrac{\partial Y}{\partial y}\right|_M -\left.\dfrac{\partial X}{\partial y}\right|_M`$

Loading…
Cancel
Save