|
|
|
@ -197,14 +197,14 @@ FR : opérateur nabla <br> |
|
|
|
EN : nabla operator |
|
|
|
|
|
|
|
|
|
|
|
$`\Deltaf = div\,\overrightarrow{grad}\f `$, $`\Deltaf = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,f `$ |
|
|
|
$`\Delta\,f = div\,\overrightarrow{grad} \,f `$, $`\Delta\,f = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,f `$ <br> |
|
|
|
ES : operador laplaciana escalar, laplaciana escalar, laplaciana de un campo escalar <br> |
|
|
|
FR : opérateur laplacien scalaire, laplacien scalaire, laplacien d'un champ scalaire <br> |
|
|
|
EN : laplacian operator, laplacian of a scalar field |
|
|
|
ES : |
|
|
|
FR : en coordonnées cartésiennes orthonormées : |
|
|
|
EN : in orthonormal Cartesian coordinate : |
|
|
|
$ \Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ |
|
|
|
EN : laplacian operator, laplacian of a scalar field <br> |
|
|
|
ES : en coordenadas cartesianas ortonormalas<br> |
|
|
|
FR : en coordonnées cartésiennes orthonormées : <br> |
|
|
|
EN : in orthonormal Cartesian coordinate : <br> |
|
|
|
$`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ |
|
|
|
|
|
|
|
$`\Delta = \overrightarrow{grad} div\,\overrightarrow{U} - \overrightarrow{rot}\,\overrightarrow{rot}\,\overrightarrow{U}`$ <br> |
|
|
|
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br> |
|
|
|
|