Browse Source

Update textbook.es.md

keep-around/6356dd3edc65a59ac573f190bcde8a5b66db70d0
Claude Meny 5 years ago
parent
commit
6356dd3edc
  1. 82
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md

82
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md

@ -90,8 +90,8 @@ https://en.wikipedia.org/wiki/ISO_31-11
##### VA10.Vectores en el espacio euclidiano / Vecteurs dans un espace euclidien / Vectors in Euclidean Space
[ES] 3 caracteristicas : norma, dirección y sentido ? <br>
[FR] 3 caractéristiques : norme, direction et sens <br>
[ES] 3 caracteristicas : norma, dirección y sentido ?
[FR] 3 caractéristiques : norme, direction et sens
[EN] 2 characteritics : magnitude (or length) and direction.
ATENCIÓN / ATTENTION / BE CAREFUL :
@ -99,9 +99,11 @@ ATENCIÓN / ATTENTION / BE CAREFUL :
[FR] mathématiquement, le mot dirección / direction / direction" n'a pas le même sens en français et espagnol, et en anglais.
[EN] mathematically, the word "dirección / direction / direction" does not have the same meaning in French and Spanish, and in English.
-------------------------------
##### VA20 Significado de los vectores en mecánica / Signification des vecteurs en mécanique / Meaning of vectors in mechanics.
* [ES] Los *vectores* pueden representar *diferentes cantidades físicas*. <br>
[ES] Los *vectores* pueden representar *diferentes cantidades físicas*. <br>
_ejemplo: vector de velocidad del punto M, y la fuerza que se aplica al punto M._<br>
[FR] Les *vecteurs* peuvent représenter des *grandeurs physiques différentes*.<br>
_exemple : vecteur vitesse du point M, et la force qui s’applique sur le point M._<br>
@ -118,6 +120,8 @@ et $`N`$)_. Elles *ne peuvent pas être comparées*.<br>
and force)_ are expressed in *different units* _(respectively: $`ms^{-1}`$ and $`N`$)_.
They *cannot be compared*.
-------------------------------
##### VA30 Vectores colineales y no colineales / Vecteurs colinéaires et non colinéaires / Collinear and non-collinear vectors
* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si tienen *igual dirección*.<br>
@ -135,82 +139,110 @@ They *cannot be compared*.
Fig "mechanics-vectors-collinear.png" ready for use.
-------------------------------
##### VA40 suma y resta de vectores / addition et soustraction de vecteurs / addition and subtraction of vectors
-------------------------------
##### VA50 multiplicación de un vector por un escalar / multiplication d'un vecteur par un scalaire / multiplication of a vector by a scalar
-------------------------------
#### VA60 vectores libres, vecores fijos / vecteurs libres, vecteurs liés / ...
-------------------------------
#### VA70Base vectorial / Base vectorielle / Base of a vector space
##### VA70-1 en un plano $`\mathcal{P}`$ / dans un plan $`\mathcal{P}`$ / in a plane $`\mathcal{P}`$
* Definición / Définition :<br>
Definición / Définition :
[ES] **2 vectores $`\vec{a}`$ y $`\vec{b}`$ pertenecientes a un plano $`\mathcal{P}`$, no nulos, no colineales y ordonados**
en una secuencia $`(\vec{a}\,,\,\vec{b})`$ forman una *base* $`(\vec{a}\,,\,\vec{b})`$ de este plano.<br>
en una secuencia $`(\vec{a}\,,\,\vec{b})`$ forman una *base* $`(\vec{a}\,,\,\vec{b})`$ de este plano.
[FR] **2 vecteurs $`\vec{a}`$ et $`\vec{b}`$ appartenant à un plan $`\mathcal{P}`$, non nuls, non colinéaires et ordonnés**
dans une suite $`(\vec{a}\,,\,\vec{b})`$ forment une *base* $`(\vec{a}\,,\,\vec{b})`$ de ce plan.<br>
dans une suite $`(\vec{a}\,,\,\vec{b})`$ forment une *base* $`(\vec{a}\,,\,\vec{b})`$ de ce plan.
[EN] ...
* Propiedad / Propriété :<br>
Propiedad / Propriété :
[ES] Si $`(\vec{a}\,,\,\vec{b})`$ es una base de un plano $`\mathcal{P}`$, entonces cualquier *vector $`\vec{V}`$* de
$`\mathcal{P}`$ se descompone *de forma única* en una **combinación lineal** *de los vectores de base* $`\vec{a}`$ et $`\vec{b}`$.<br>
$`\mathcal{P}`$ se descompone *de forma única* en una **combinación lineal** *de los vectores de base* $`\vec{a}`$ et $`\vec{b}`$.
[FR] Si $`(\vec{a}\,,\,\vec{b})`$ est une base d'un plan $`\mathcal{P}`$, alors tout *vecteur $`\vec{V}`$* de $`\mathcal{P}`$
se décompose de *façon unique* en une **combinaison linéaire** *des vecteurs de base* $`\vec{a}`$ et $`\vec{b}`$.<br>
se décompose de *façon unique* en une **combinaison linéaire** *des vecteurs de base* $`\vec{a}`$ et $`\vec{b}`$.
[EN] ...
* Écriture mathématique :<br>
"$`(\overrightarrow{a},\overrightarrow{b})`$ est une base de $`\mathcal{P}`$"
Escritura matemática / Écriture mathématique :
[ES]
[FR]"$`(\overrightarrow{a},\overrightarrow{b})`$ est une base de $`\mathcal{P}`$"
$`\Longrightarrow \quad\forall \overrightarrow{V}\in\mathcal{P}`$$`\quad\exists ! (\alpha,\beta)\in\mathbb{R}^2`$$`\quad
\overrightarrow{V}=\alpha\cdot\overrightarrow{a}+\beta\cdot\overrightarrow{b}`$
[EN]
Fig "mechanics-vector-base-plane_L1200.gif" ready for use.
##### VA70-2 en un espacio vectorial $`\mathcal{E}`$ de dimensión $`n`$ / dans un espace vectoriel $`\mathcal{E}`$ de dimension $`n`$ / in a vector space $`\mathcal{E}`$ of dimension $`n`$
* VA75
##### VA75
[ES] En matemáticas, una **secuencia** es un *conjunto ordenado de elementos*, llamados sus "términos".
y que están *indexados por números naturales*.<br>
y que están *indexados por números naturales*.
[FR] En mathématiques, une **suite** est un *ensemble ordonné d'éléments*, appelés ses "termes"
et qui sont *indexées par les entiers naturels*.(le terme "n-uplet" n'est pas bon ...)<br>
et qui sont *indexées par les entiers naturels*.(le terme "n-uplet" n'est pas bon ...)
[EN] In mathematics, a **sequence** is an *ordered set of elements*, called its "terms"
and which are *indexed by natural numbers*.
* VA80
##### VA80
[ES] *$`n`$ vectores ordenados* en una secuencia $`(\vec{a_1},\vec{a_2},...,\vec{a_n})`$ forman
una **base de un espacio vectorial** $`\mathcal{E}`$ de dimensión $`n`$ si *cualquier vector* de este
espacio se descompone de *manera única en una combinación lineal* de los vectores $`\vec{a_1},\vec{a_2},...,\vec{a_n}`$.<br>
espacio se descompone de *manera única en una combinación lineal* de los vectores $`\vec{a_1},\vec{a_2},...,\vec{a_n}`$.
[FR] *$`n`$ vecteurs ordonnés* dans une suite $`(\vec{a_1},\vec{a_2},...,\vec{a_n})`$ forment
une **base d'un espace vectoriel** $`\mathcal{E}`$ de dimension $`n`$, si *tout vecteur* $`\vec{V}`$
de cet espace $`\mathcal{E}`$ se décompose de *façon unique* en une *combinaison linéaire* des vecteurs
$`\vec{a_1},\vec{a_2},...,\vec{a_n}`$.<br>
$`\vec{a_1},\vec{a_2},...,\vec{a_n}`$.
[EN] *$`n`$ ordered vectors* in a sequence $`(\vec{a_1},\vec{a_2},...,\vec{a_n})`$ form a
**basis of a vector space** $`\mathcal{E}`$ of dimension $`n`$ if *any vector* of this space decomposes in
*a unique way* into a *linear combination* of the vectors $`\vec{a_1},\vec{a_2},...,\vec{a_n}`$.
* "$`(\vec{a_1},\vec{a_2},...,\vec{a_n})`$ est une base de $`\mathcal{E}`$"$`
[ES]
[FR]"$`(\vec{a_1},\vec{a_2},...,\vec{a_n})`$ est une base de $`\mathcal{E}`$"$`
\quad\Longrightarrow \quad\forall \overrightarrow{V}\in\mathcal{E}`$$`\quad\exists ! (\alpha_1,\alpha_1,...;\alpha_1)\in\mathbb{R}^n`$$`\quad
\overrightarrow{V}=\alpha_1\cdot\overrightarrow{a_1}+\alpha_2\cdot\overrightarrow{a_2}+...+\alpha_n\cdot\overrightarrow{a_n}`$
* VA90
[EN]
##### VA90
[ES] Para cualquier base denotamos los vectores base $`\vec{a_i}`$.
(ejemplo : vectores de la base convencionale (no ortonormales) de un cristal en física
del estado sólido/estructura de materiales) :<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-08<br>
Reservamos la notación $`\vec{e_i}`$ para las bases normales y ortonormales:<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-28.<br>
<br>[FR] Pour un base quelconque nous notons les vecteurs de base $`\vec{a_i}`$.
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-28.
[FR] Pour un base quelconque nous notons les vecteurs de base $`\vec{a_i}`$.
(exemple des vecteurs de base conventionnelle (non orthonormée) d'un cristal,
en physique du solide/structure des matériaux) :<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-08<br>
Nous réservons la notation $`\vec{e_i}`$ pour les vecteurs des bases normées et orthonormée :<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-28.<br>
<br>[EN] For any base we denote the base vectors $`\vec{a_i}`$.
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-28.
[EN] For any base we denote the base vectors $`\vec{a_i}`$.
(example of the conventional base (not orthonormal) of a crystal, in solid state
physics/structure of materials) :<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-08<br>

Loading…
Cancel
Save