|
|
|
@ -212,8 +212,10 @@ $`\displaystyle=\int_{-x_0/2}^{+x_0/2} e^{\dfrac{i\,2\,\pi\,u_x\,x}{\lambda}}\; |
|
|
|
|
|
|
|
$`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$ |
|
|
|
|
|
|
|
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}`$ |
|
|
|
$`\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$$`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$ |
|
|
|
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}`$ |
|
|
|
$`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.`$ |
|
|
|
$`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$ |
|
|
|
$`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$ |
|
|
|
|
|
|
|
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$ |
|
|
|
|
|
|
|
@ -253,7 +255,9 @@ $`=\;sin\,\theta\cdot\overrightarrow{e_x}\;+\;cos\,\theta\cdot\overrightarrow{e_ |
|
|
|
|
|
|
|
ainsi l'intensité diffractée à l'infini se réécrit |
|
|
|
|
|
|
|
$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$$`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$ |
|
|
|
$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}`$ |
|
|
|
$`\;{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$ |
|
|
|
$`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|