|
|
|
@ -409,7 +409,7 @@ $`= |
|
|
|
\end{array} \right.\quad`$ |
|
|
|
$`=-\,\overrightarrow{e_{\rho}}`$ |
|
|
|
|
|
|
|
avec $`\overrightarrow{e_{\rho}}`$ vecteur de la base cylindrique : |
|
|
|
où $`\overrightarrow{e_{\rho}}`$ est le vecteur de la base cylindrique : |
|
|
|
$`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{e_z})`$. |
|
|
|
|
|
|
|
$`\dfrac{d\overrightarrow{e_r}}{dt}=\dfrac{\partial\overrightarrow{e_r}}{\partial\theta}\cdot \dfrac{d\theta}{dt}\;+\;\dfrac{\partial\overrightarrow{e_r}}{\partial\varphi}\cdot \dfrac{d\varphi}{dt}\quad`$ |
|
|
|
|