Browse Source

Update cheatsheet.en.md

keep-around/6b9ffe8941064064bb22b9db9793a2d772e8955c
Claude Meny 6 years ago
parent
commit
6b9ffe8941
  1. 31
      01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

31
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

@ -88,6 +88,37 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap
#### The thin spherical mirror (paraxial optics)
* We call **thin spherical mirror** a *spherical mirror used in the Gauss conditions*.
##### Analytical study (in paraxial optics)
* **Spherical mirror equation** = **conjuction equation** for a spherical mirror :<br><br>
$`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$&nbsp;&nbsp;(equ.1)
* **Transverse magnification expression** :<br><br>
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$&nbsp;&nbsp;(equ.2)
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1)
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! *USEFUL 1° :<br>
! The conjunction equation and the transverse magnification equation for a plane mirror
! are obtained by rewriting these two equations for a spherical mirror in the limit when
! $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and
! $`\overline{M_T}=+1`$.
! *USEFUL 2° :<br>

Loading…
Cancel
Save