|
|
|
@ -88,6 +88,37 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap |
|
|
|
|
|
|
|
#### The thin spherical mirror (paraxial optics) |
|
|
|
|
|
|
|
* We call **thin spherical mirror** a *spherical mirror used in the Gauss conditions*. |
|
|
|
|
|
|
|
##### Analytical study (in paraxial optics) |
|
|
|
|
|
|
|
* **Spherical mirror equation** = **conjuction equation** for a spherical mirror :<br><br> |
|
|
|
$`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$ (equ.1) |
|
|
|
|
|
|
|
* **Transverse magnification expression** :<br><br> |
|
|
|
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$ (equ.2) |
|
|
|
|
|
|
|
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) |
|
|
|
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. |
|
|
|
|
|
|
|
! *USEFUL 1° :<br> |
|
|
|
! The conjunction equation and the transverse magnification equation for a plane mirror |
|
|
|
! are obtained by rewriting these two equations for a spherical mirror in the limit when |
|
|
|
! $`|\overline{SC}|\longrightarrow\infty`$. |
|
|
|
! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and |
|
|
|
! $`\overline{M_T}=+1`$. |
|
|
|
|
|
|
|
! *USEFUL 2° :<br> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|