Browse Source

Update textbook.en.md

keep-around/729b14eef43fd9d578f03bb6835ab06945590cba
Claude Meny 6 years ago
parent
commit
729b14eef4
  1. 19
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

19
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -191,11 +191,26 @@ $`\nabla = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$ +\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$
, or more , or more
$`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} $`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y}
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$ <br>
ES : operador nabla <br> ES : operador nabla <br>
FR : opérateur nabla <br> FR : opérateur nabla <br>
EN : nabla operator EN : nabla operator
$`\Deltaf = div\,\overrightarrow{grad}\f `$, $`\Deltaf = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,f `$
ES : operador laplaciana escalar, laplaciana escalar, laplaciana de un campo escalar <br>
FR : opérateur laplacien scalaire, laplacien scalaire, laplacien d'un champ scalaire <br>
EN : laplacian operator, laplacian of a scalar field
ES :
FR : en coordonnées cartésiennes orthonormées :
EN : in orthonormal Cartesian coordinate :
$ \Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$
$`\Delta = \overrightarrow{grad} div\,\overrightarrow{U} - \overrightarrow{rot}\,\overrightarrow{rot}\,\overrightarrow{U}`$ <br>
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br>
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br>
EN : laplacian operator, vectorial laplacian, laplacian of a vector field
$`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no? <br> $`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no? <br>
ES : gradiente <br> ES : gradiente <br>
FR : gradient <br> FR : gradient <br>
@ -207,7 +222,7 @@ FR : divergence <br>
EN : divergence <br> EN : divergence <br>
$`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$ $`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$
$`rot\times\overrightarrow{U}`$, but $`\overrightarrow{rot}\times\overrightarrow{U}`$ better, no? <br>
$`rot\,\overrightarrow{U}`$, but $`\overrightarrow{rot}\,\overrightarrow{U}`$ better, no? <br>
in some English texts : $`curl\times\overrightarrow{U}`$ <br> in some English texts : $`curl\times\overrightarrow{U}`$ <br>
$`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$ <br> $`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$ <br>
ES : rotacional de un vector <br> ES : rotacional de un vector <br>

Loading…
Cancel
Save