|
|
@ -191,11 +191,26 @@ $`\nabla = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_ |
|
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$ |
|
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$ |
|
|
, or more |
|
|
, or more |
|
|
$`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} |
|
|
$`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} |
|
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$ |
|
|
|
|
|
|
|
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$ <br> |
|
|
ES : operador nabla <br> |
|
|
ES : operador nabla <br> |
|
|
FR : opérateur nabla <br> |
|
|
FR : opérateur nabla <br> |
|
|
EN : nabla operator |
|
|
EN : nabla operator |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$`\Deltaf = div\,\overrightarrow{grad}\f `$, $`\Deltaf = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,f `$ |
|
|
|
|
|
ES : operador laplaciana escalar, laplaciana escalar, laplaciana de un campo escalar <br> |
|
|
|
|
|
FR : opérateur laplacien scalaire, laplacien scalaire, laplacien d'un champ scalaire <br> |
|
|
|
|
|
EN : laplacian operator, laplacian of a scalar field |
|
|
|
|
|
ES : |
|
|
|
|
|
FR : en coordonnées cartésiennes orthonormées : |
|
|
|
|
|
EN : in orthonormal Cartesian coordinate : |
|
|
|
|
|
$ \Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ |
|
|
|
|
|
|
|
|
|
|
|
$`\Delta = \overrightarrow{grad} div\,\overrightarrow{U} - \overrightarrow{rot}\,\overrightarrow{rot}\,\overrightarrow{U}`$ <br> |
|
|
|
|
|
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br> |
|
|
|
|
|
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br> |
|
|
|
|
|
EN : laplacian operator, vectorial laplacian, laplacian of a vector field |
|
|
|
|
|
|
|
|
$`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no? <br> |
|
|
$`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no? <br> |
|
|
ES : gradiente <br> |
|
|
ES : gradiente <br> |
|
|
FR : gradient <br> |
|
|
FR : gradient <br> |
|
|
@ -207,7 +222,7 @@ FR : divergence <br> |
|
|
EN : divergence <br> |
|
|
EN : divergence <br> |
|
|
$`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$ |
|
|
$`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
|
$`rot\times\overrightarrow{U}`$, but $`\overrightarrow{rot}\times\overrightarrow{U}`$ better, no? <br> |
|
|
|
|
|
|
|
|
$`rot\,\overrightarrow{U}`$, but $`\overrightarrow{rot}\,\overrightarrow{U}`$ better, no? <br> |
|
|
in some English texts : $`curl\times\overrightarrow{U}`$ <br> |
|
|
in some English texts : $`curl\times\overrightarrow{U}`$ <br> |
|
|
$`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$ <br> |
|
|
$`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$ <br> |
|
|
ES : rotacional de un vector <br> |
|
|
ES : rotacional de un vector <br> |
|
|
|