|
|
|
@ -41,14 +41,14 @@ des coordonnées spatiales et la coordonnés temporelle ne change pas le résult |
|
|
|
je peux écrire : |
|
|
|
<br> |
|
|
|
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)= |
|
|
|
-\dfrac{\partial}{\partial t} \,\left(\overrightarrow{rot}\overrightarrow{B}\right)`$ |
|
|
|
<br> |
|
|
|
-\dfrac{\partial}{\partial t} \,\left(\overrightarrow{rot}\overrightarrow{B}\right)`$<br> |
|
|
|
|
|
|
|
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)= |
|
|
|
-\dfrac{\partial}{\partial t} \,\left(\mu_0\;\overrightarrow{j} + |
|
|
|
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\right)`$ |
|
|
|
<br> |
|
|
|
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\right)`$<br> |
|
|
|
|
|
|
|
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right) |
|
|
|
=-\mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} + |
|
|
|
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$ |
|
|
|
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$<br> |
|
|
|
|
|
|
|
* $`\overrightarrow{grad} \left( div \; \overrightarrow{E} \right) = \overrightarrow{grad} \left( \dfrac{\rho}{\epsilon_O} \right)`$ |