|
|
|
@ -679,6 +679,13 @@ $`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt} |
|
|
|
\right)`$ |
|
|
|
$`=\dfrac{\overrightarrow{OM}(t+dt)-\overrightarrow{OM}(t)}{dt}`$ |
|
|
|
|
|
|
|
$`\displaystyle\dfrac{d\overrightarrow{OM}(t)}{dt} |
|
|
|
=\lim_{\Delta t\rightarrow 0} |
|
|
|
\left( |
|
|
|
\dfrac{\overrightarrow{OM}(t+\Delta t)-\overrightarrow{OM}(t))}{\Delta t} |
|
|
|
\right)`$ |
|
|
|
$`=\dfrac{\overrightarrow{OM}(t+dt)-\overrightarrow{OM}(t)}{dt}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|