Browse Source

Update textbook.fr.md

keep-around/799845addf3b916cd98952da005c603f3540e3c5
Claude Meny 5 years ago
parent
commit
799845addf
  1. 20
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

20
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

@ -510,24 +510,22 @@ tenseur de courbure, tenseur énergie-impulsion, ...
##### Componentes de un producto vectorial en base ortonormal / Composantes d'un produit vectoriel dans une base orthonormée / Components of a vector product in an orthonormal basis
$`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée
$`\quad\Longrightarrow`$
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we should use :
$`\overrightarrow{U}=\left(\begin{array}{l}U_1//U_2//U_3)\end{array}\right)`$
* For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we should use (?) (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br>
$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right.`$
méthode des produits en croix :
* méthode des produits en croix :
$`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ et
$`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$
$`$`\vec{U}\land\vec{V}=`$
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04
$`\overrightarrow{U}=\begin\left
$`\overrightarrow{U}=`$
method similar to the sum used to obtain the determinant of a matrix :

Loading…
Cancel
Save